Introduction to generalized type systems
Abstract
Programming languages often come with type systems. Some of these are simple, others are sophisticated. As a stylistic representation of types in programming languages several versions of typed lambda calculus are studied. During the last 20 years many of these systems have appeared, so there is some need of classification. Working towards a taxonomy, gives a fine-structure of the theory of constructions (Coquand and Huet 1988) in the form of a canonical cube of eight type systems ordered by inclusion. Berardi (1988) and have independently generalized the method of constructing systems in the A.-cube. Moreover, Berardi (1988 showed that the generalized type systems are flexible enough to describe many logical systems. In that way the well-known propositions-as-types interpretation obtains a nice canonical form.
References (30)
- B arendregt, H. P. 1984. The Lam bda Calculus; Its S yn ta x and Sem antics (2nd Edn). N o rth - H olland.
- Barendregt, H. P. 1991. L am bda calculi w ith types. In S. A bram sky, D. G ab b ai and T. M aibaum (editors), Handbook o f Logic in Computer Science. O xford U niversity Press.
- Barendregt. H. P. and van Leeuwen. M. 1985. F u nctional p rogram m ing an d the language T A LE. In Lecture N otes in Computer Science, 224, pp. 122-208. Springer-V erlag. B arendregt, H. P. and H em erik, K. 1990. Types in lam b d a calculi and p rogram m ing languages. In Proc. European Sym posium on Programming, pp. 1-35, C openhagen, D en m ark (M ay).
- Barendregt, H. P. and D ekkers, W. 1990. T yped lam bda calculi. B arendsen, E. 1989. Representation o f Logic, Data Types and Recursive Functions in Typed Lam bda Calculi. M asters thesis, U niversity o f N ijm egen, N etherlands. B arendsen, E. and G euvers, H. 1989. C onservativity o f ÀP over P R E D . M anuscript. U niversity o f N ijm egen, N etherlands. B erardi, S. 1988. Personal com m unication.
- Berardi, S. 1990. Type Dependence and Constructive M athem atics. P hD thesis, M athem atical Institute, T orino, Italy.
- de Bruijn, N . G . 1970. The m athem atical language A U T O M A T H , its usage an d some o f its extensions. In Lecture N otes in M athem atics, 125, pp. 29-61. Springer-V erlag, de Bruijn, N. G. 1980. A survey o f the A U T O M A T H project. In J. R. H indley an d J. P. Seldin (editors), To H. B. C urry: Essays on Combinatory logic. Lam bda Calculus and Formalism, pp. 580-606. A cadem ic Press.
- C ardelli, L. and W egner, P. 1985. O n understanding types, d a ta ab stractio n and polym orphism . A C M Comp. Surveys, 17 (4): 471-522.
- C hurch, A. 1940. A fo rm ulation o f the simple theory o f types. J. Sym bolic Logic, 5: 56-68.
- C oquand, T h. 1989. A n in tro d u ctio n to type theory. To ap p ear in A. R. M eyer (editor), Proc. Ecole de Printemps du L IT P , Albi.
- C oquand, Th. an d H uet, G. 1988. T he calculus o f constructions. Inform ation and Computation, 76: 95-120.
- C urry, H . B. and Feys, R. 1958. Combinatory logic. N o rth H olland.
- van D aalen, D. 1980. The Language Theory o f A U T O M A T H . P hD . thesis, Technical U niversity Eindhoven, N etherlands.
- van D alen, D. 1983. Logic and Structure. (2nd edn). Springer-V erlag.
- Fujita, K. 1989. R elationship betw een logic an d type system. U n published m anuscript. R esearch Institute o f Electrical C om m unication, T o h o k u U niversity, Japan.
- G euvers, H. 1988. The Interpretation o f Logics in Type System s. M aster thesis, U niversity of Nijm egen, N etherlands.
- G euvers, H. 1989. T heory o f constructions is n ot conservative over higher o rder logic. M anuscript. U niversity o f N ijm egen, N etherlands.
- G euvers, H. 1990. Type systems for higher order logic. M anuscript. U niversity o f Nijmegen, N etherlands.
- G euvers, H. and N ederhof, M .-J. 1991. A m o d u lar p ro o f o f strong norm alization for the theory o f constructions. Journal o f Functional Programming 1(2): 155-189.
- G irard, J.-Y. 1972. Interprétation Fonctionelle et Élimination des Coupures dans /'Arithmétique d'O rdre Supérieur. Thèse de D o cto rat d 'É tat, U niversité Paris VII, France. G o rd o n , M. H ., M ilner, R. and W adsw orth, C. 1979. Edinburgh L C F : Lecture N otes in C om puter Science, 78. Springer-V erlag.
- H arper, R., Honsell F. and Plotkin, G. 1987. A fram ew ork fo r defining logics. In Proc. 2nd Sym p. Logic in Computer Science, pp. 194-204. Ith aca. New Y ork.
- H ow ard, W. A. 1980. The form ulae-as-types n otion o f construction. In J. R. H indley and J. P. Seldin (editors), To H. B. C urry: Essays on Combinatory logic, Lam bda Calculus and Formalism, pp. 479^490. A cadem ic Press.
- Leivant, D. 1989. C ontractin g proofs to program s. In : O difreddi. P. (editor), Logic and Computer Science, pp. 279-327, A cadem ic Press.
- L ongo, G. and M oggi, E. 1988. Constructive N atural Deduction and its M odest Interpretation. R eport C M U -CS-88-131, C arnegie M ellon U niversity, Pittsburgh, U SA. M artin-L öf, P. 1970. A construction o f the provable w ellorderings o f the theory o f species. U npublished M anuscript. M athem atical Institute, U niversity o f Stockholm , Sweden. M artin-L öf, P. 1984. Intuitionistic Type Theory. Bibliopolis. M ilner, R. 1984. A proposal fo r stan d ard M L. In Proc. 1984 A C M Sym posium on L IS P and Functional Programming, pp. 184-197. A ustin, Texas.
- M ostow ski, A. 1951. O n the rules o f p ro o f in the p ure functional calculus o f first order. J. Sym bolic Logic, 16: 107-111.
- Perem ans, W. 1949. Een opm erking over intuitionistische logica. R ep o rt ZW -16. C enter for M athem atics and C om puter Science, K ruislaan 413, 1098 SJ A m sterdam . Praw itz, D . 1965. N atural Deduction. A lm qvist an d Wiksell. R enardel de L avalette, G. 1987. Strictness analysis for a language w ith polym orphic and recursive types (preprint). D ep artm en t o f P hilosophy, U trech t U niversity, N etherlands. Reynolds, J. 1974. T ow ards a theory o f type structure. In Proc. Colloque sur la Programmation. In Lecture N otes in Computer Science, 19, pp. 408^4-25. Springer-V erlag. R eynolds, J. 1985. Three approaches to type theory. In Lecture N otes in Computer Science, 185, pp. 145-146. Springer-Verlag.
- Stenlund, S. 1972. C om binators, X-terms an d p ro o f theory. D. Reidel.
- Swaen, M. D . G. 1989. Weak and Strong Sum -elim ination in Institutionistic Type Theory. PhD . thesis, U niversity o f A m sterdam , N etherlands. Terlouw , J. 1988. Personal com m unication.
- T urner, D. 1985. M iran d a: A non-strict functional language w ith polym orphic types. In Jean- Pierre Jo u a n n a u d (editor). Functional Program ming Languages and Computer Architecture. Lecture N otes in Computer Science, 201, pp. 1-16. Springer-V erlag.
- de Vrijer, R. 1975. Big trees in a Â-calculus w ith A-expressions as types. In Proc. Sym posium on X-calculus and computer science theory, Lecture N otes in C omputer Science, 37, pp. 252-271. Springer-Verlag.
- H enk Barendregt, Faculty o f M athem atics a n d C o m p u ter Science, C atholic U niversity N ijm egen, T oernooiveld 1, 6525 E D N ijm egen, T he N etherlands.