Academia.eduAcademia.edu

Outline

CEMP1 Induces Transformation in Human Gingival Fibroblasts

2015, PLOS ONE

https://doi.org/10.1371/JOURNAL.PONE.0127286

Abstract

Cementum Protein 1 (CEMP1) is a key regulator of cementogenesis. CEMP1 promotes cell attachment, differentiation, deposition rate, composition, and morphology of hydroxyapatite crystals formed by human cementoblastic cells. Its expression is restricted to cementoblasts and progenitor cell subpopulations present in the periodontal ligament. CEMP1 transfection into non-osteogenic cells such as adult human gingival fibroblasts results in differentiation of these cells into a "mineralizing" cell phenotype. Other studies have shown evidence that CEMP1 could have a therapeutic potential for the treatment of bone defects and regeneration of other mineralized tissues. To better understand CEMP1's biological effects in vitro we investigated the consequences of its expression in human gingival fibroblasts (HGF) growing in non-mineralizing media by comparing gene expression profiles. We identified several mRNAs whose expression is modified by CEMP1 induction in HGF cells. Enrichment analysis showed that several of these newly expressed genes are involved in oncogenesis. Our results suggest that CEMP1 causes the transformation of HGF and NIH3T3 cells. CEMP1 is overexpressed in cancer cell lines. We also determined that the region spanning the CEMP1 locus is commonly amplified in a variety of cancers, and finally we found significant overexpression of CEMP1 in leukemia, cervix, breast, prostate and lung cancer. Our findings suggest that CEMP1 exerts modulation of a number of cellular genes, cellular development, cellular growth, cell death, and cell cycle, and molecules associated with cancer.

References (55)

  1. Grzesik WJ, Narayanan AS. Cementum and periodontal wound healing and regeneration. Crit Rev Oral Biol Med 2002, 13:474-484. PMID: 12499241
  2. Alvarez-Perez MA, Narayanan S, Zeichner-David M, Rodriguez Carmona B, Arzate H. Molecular clon- ing, expression and immunolocalization of a novel human cementum-derived protein (CP-23). Bone 2006, 38:409-419. PMID: 16263347
  3. Hoz L, Romo E, Zeichner-David M, Sanz M, Nunez J, Gaitan L, et al. Cementum protein 1 (CEMP1) in- duces differentiation by human periodontal ligament cells under three-dimensional culture conditions. Cell Biol Int 2012, 36:129-136. doi: 10.1042/CBI20110168 PMID: 21929512
  4. Valdes De Hoyos A, Hoz-Rodriguez L, Arzate H, Narayanan AS. Isolation of protein-tyrosine phospha- tase-like member-a variant from cementum. J Dent Res 2012, 91:203-209.
  5. Nunez J, Sanz-Blasco S, Vignoletti F, Munoz F, Arzate H, Villalobos C, et al. Periodontal regeneration following implantation of cementum and periodontal ligament-derived cells. J Periodontal Res 2012, 47:33-44. doi: 10.1111/j.1600-0765.2011.01402.x PMID: 21906056
  6. Komaki M, Iwasaki K, Arzate H, Narayanan AS, Izumi Y, Morita I. Cementum protein 1 (CEMP1) in- duces a cementoblastic phenotype and reduces osteoblastic differentiation in periodontal ligament cells. J Cell Physiol 2012, 227:649-657. doi: 10.1002/jcp.22770 PMID: 21465469
  7. Bartold PM, McCulloch CA, Narayanan AS, Pitaru S. Tissue engineering: a new paradigm for periodon- tal regeneration based on molecular and cell biology. Periodontol 2000 2000, 24:253-269. PMID: 11276871
  8. Villarreal-Ramirez E, Moreno A, Mas-Oliva J, Chavez-Pacheco JL, Narayanan AS, Gil-Chavarria I, et al. Characterization of recombinant human cementum protein 1 (hrCEMP1): primary role in biominer- alization. Biochem Biophys Res Commun 2009, 384:49-54. doi: 10.1016/j.bbrc.2009.04.072 PMID: 19393626
  9. Paula-Silva FW, Ghosh A, Arzate H, Kapila S, da Silva LA, Kapila YL. Calcium hydroxide promotes cementogenesis and induces cementoblastic differentiation of mesenchymal periodontal ligament cells in a CEMP1-and ERK-dependent manner. Calcif Tissue Int 2010, 87:144-157. doi: 10.1007/s00223- 010-9368-x PMID: 20440482
  10. Carmona-Rodriguez B, Alvarez-Perez MA, Narayanan AS, Zeichner-David M, Reyes-Gasga J, Molina- Guarneros J, et al. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts. Biochem Biophys Res Commun 2007, 358:763-769. PMID: 17509525
  11. Serrano J, Romo E, Bermudez M, Narayanan AS, Zeichner-David M, Santos L, et al. Bone regenera- tion in rat cranium critical-size defects induced by Cementum Protein 1 (CEMP1). PLoS One 2013, 8: e78807. doi: 10.1371/journal.pone.0078807 PMID: 24265720
  12. Narayanan AS, Page RC. Biochemical characterization of collagens synthesized by fibroblasts derived from normal and diseased human gingiva. J Biol Chem 1976, 251:5464-5471.
  13. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, et al. The RIN: an RNA integ- rity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006, 7:3. PMID: 16448564
  14. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normali- zation, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4:249- 264. PMID: 14615633
  15. Tai YC, Speed TP. Statistical analysis of microarray time course data. Taylor & Francis, 4 ParkSquare, Milton Park, Abingdon OX14 4RN: BIOS Scientific Publishers Limited; 2005.
  16. Lu Y, Liu PY, Xiao P, Deng HW. Hotelling's T2 multivariate profiling for detecting differential expression in microarrays. Bioinformatics 2005, 21:3105-3113. PMID: 15905280
  17. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in micro- array experiments. Stat Appl Genet Mol Biol 2004, 3:Article3.
  18. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.
  19. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57. doi: 10.1038/nprot.2008.211 PMID: 19131956
  20. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the compre- hensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1-13.
  21. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 2013, 41:D991-995.
  22. Geissmann Q. OpenCFU, a new free and open-source software to count cell colonies and other circular objects. PLoS One 2013, 8:e54072. doi: 10.1371/journal.pone.0054072 PMID: 23457446
  23. Arzate H, Jimenez-Garcia LF, Alvarez-Perez MA, Landa A, Bar-Kana I, Pitaru S. Immunolocalization of a human cementoblastoma-conditioned medium-derived protein. J Dent Res 2002, 81:541-546.
  24. Lee BK. Growth factors in oral and maxillofacial surgery: potentials and challenges. J Korean Assoc Oral Maxillofac Surg 2013, 39:255-256. doi: 10.5125/jkaoms.2013.39.6.255 PMID: 24516813
  25. Webster MT, Fan CM. c-MET regulates myoblast motility and myocyte fusion during adult skeletal mus- cle regeneration. PLoS One 2013, 8:e81757. doi: 10.1371/journal.pone.0081757 PMID: 24260586
  26. Lerch JK, Martinez-Ondaro YR, Bixby JL, Lemmon VP. cJun promotes CNS axon growth. Mol Cell Neurosci 2014, 59:97-105. doi: 10.1016/j.mcn.2014.02.002 PMID: 24521823
  27. Morello D, Lavenu A, Babinet C. Differential regulation and expression of jun, c-fos and c-myc proto-on- cogenes during mouse liver regeneration and after inhibition of protein synthesis. Oncogene 1990, 5:1511-1519.
  28. Brannon RB, Fowler CB, Carpenter WM, Corio RL. Cementoblastoma: an innocuous neoplasm? A clinicopathologic study of 44 cases and review of the literature with special emphasis on recurrence. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002, 93:311-320. PMID: 11925541
  29. Neves FS, Falcao AF, Dos Santos JN, Dultra FK, Rebello IM, Campos PS. Benign cementoblastoma: case report and review of the literature. Minerva Stomatol 2009, 58:55-59. PMID: 19234437
  30. González-Alva P, Gómez-Plata E, Arzate H. LOCALIZACIÓN DE LAS PROTEÍNAS ESPECÍFICAS DEL CEMENTO RADICULAR CEMP1 Y CAP EN CÉLULAS NEOPLÁSICAS. Journal of Oral Re- search 2013, 2.
  31. Fan M, Liu Y, Xia F, Wang Z, Huang Y, Li J, et al. Increased expression of EphA2 and E-N cadherin switch in primary hepatocellular carcinoma. Tumori 2013, 99:689-696. doi: 10.1700/1390.15457 PMID: 24503792
  32. Saha B, Chaiwun B, Imam SS, Tsao-Wei DD, Groshen S, Naritoku WY, et al. Overexpression of E-cad- herin protein in metastatic breast cancer cells in bone. Anticancer Res 2007, 27:3903-3908. PMID: 18225549
  33. Saha B, Arase A, Imam SS, Tsao-Wei D, Naritoku WY, Groshen S, et al. Overexpression of E-cadherin and beta-catenin proteins in metastatic prostate cancer cells in bone. Prostate 2008, 68:78-84.
  34. Rodini CO, Xavier FC, Paiva KB, De Souza Setubal Destro MF, Moyses RA, Michaluarte P, et al. Homeobox gene expression profile indicates HOXA5 as a candidate prognostic marker in oral squa- mous cell carcinoma. Int J Oncol 2012, 40:1180-1188. doi: 10.3892/ijo.2011.1321 PMID: 22227861
  35. Ongusaha PP, Kwak JC, Zwible AJ, Macip S, Higashiyama S, Taniguchi N, et al. HB-EGF is a potent in- ducer of tumor growth and angiogenesis. Cancer Res 2004, 64:5283-5290. PMID: 15289334
  36. McCarthy SA, Samuels ML, Pritchard CA, Abraham JA, McMahon M. Rapid induction of heparin-bind- ing epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes Dev 1995, 9:1953-1964.
  37. Sharma A, Ray R, Rajeswari MR. Overexpression of high mobility group (HMG) B1 and B2 proteins di- rectly correlates with the progression of squamous cell carcinoma in skin. Cancer Invest 2008, 26:843- 851. doi: 10.1080/07357900801954210 PMID: 18798064
  38. Kostova N, Zlateva S, Ugrinova I, Pasheva E. The expression of HMGB1 protein and its receptor RAGE in human malignant tumors. Mol Cell Biochem 2010, 337:251-258. doi: 10.1007/s11010-009- 0305-0 PMID: 19876719
  39. Wang W, Jiang H, Zhu H, Zhang H, Gong J, Zhang L, et al. Overexpression of high mobility group box 1 and 2 is associated with the progression and angiogenesis of human bladder carcinoma. Oncol Lett 2013, 5:884-888. PMID: 23426143
  40. Nakamura K, Yashiro M, Matsuoka T, Tendo M, Shimizu T, Miwa A, et al. A novel molecular targeting compound as K-samII/FGF-R2 phosphorylation inhibitor, Ki23057, for Scirrhous gastric cancer. Gastro- enterology 2006, 131:1530-1541. PMID: 17101326
  41. Chen W, Wang GM, Guo JM, Sun LA, Wang H. NGF/gamma-IFN inhibits androgen-independent pros- tate cancer and reverses androgen receptor function through downregulation of FGFR2 and decrease in cancer stem cells. Stem Cells Dev 2012, 21:3372-3380. doi: 10.1089/scd.2012.0121 PMID: 22731611
  42. Zhang C, Fu L, Fu J, Hu L, Yang H, Rong TH, et al. Fibroblast growth factor receptor 2-positive fibro- blasts provide a suitable microenvironment for tumor development and progression in esophageal car- cinoma. Clin Cancer Res 2009, 15:4017-4027. doi: 10.1158/1078-0432.CCR-08-2824 PMID: 19509166
  43. Feng S, Zhou L, Nice EC, Huang C. Fibroblast growth factor receptors: multifactorial-contributors to tumor initiation and progression. In: Histol Histopathol; 2014.
  44. Naylor TL, Greshock J, Wang Y, Colligon T, Yu QC, Clemmer V, et al. High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res 2005, 7:R1186-1198. PMID: 16457699
  45. Man TK, Lu XY, Jaeweon K, Perlaky L, Harris CP, Shah S, et al. Genome-wide array comparative ge- nomic hybridization analysis reveals distinct amplifications in osteosarcoma. BMC Cancer 2004, 4:45. PMID: 15298715
  46. Laura G, Marilena P, lacopo S, Aldesia P, Alberto M, Stefania C, et al. Genome-wide copy number anal- ysis in pediatric glioblastoma multiforme. Am J Cancer Res 2014, 4:293-303.
  47. Choucair KA, Guerard KP, Ejdelman J, Chevalier S, Yoshimoto M, Scarlata E, et al. The 16p13.3 (PDPK1) Genomic Gain in Prostate Cancer: A Potential Role in Disease Progression. Transl Oncol 2012, 5:453-460. PMID: 23401739
  48. Maurer M, Su T, Saal LH, Koujak S, Hopkins BD, Barkley CR, et al. 3-Phosphoinositide-dependent ki- nase 1 potentiates upstream lesions on the phosphatidylinositol 3-kinase pathway in breast carcinoma. Cancer Res 2009, 69:6299-6306. doi: 10.1158/0008-5472.CAN-09-0820 PMID: 19602588
  49. Shen H, Zhu Y, Wu YJ, Qiu HR, Shu YQ. Genomic alterations in lung adenocarcinomas detected by multicolor fluorescence in situ hybridization and comparative genomic hybridization. Cancer Genet Cytogenet 2008, 181:100-107. doi: 10.1016/j.cancergencyto.2007.11.012 PMID: 18295661
  50. Lacle MM, Kornegoor R, Moelans CB, Maes-Verschuur AH, van der Pol C, Witkamp AJ, et al. Analysis of copy number changes on chromosome 16q in male breast cancer by multiplex ligation-dependent probe amplification. Mod Pathol 2013, 26:1461-1467. doi: 10.1038/modpathol.2013.94 PMID: 23743929
  51. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009, 458:719-724. doi: 10.1038/ nature07943 PMID: 19360079
  52. Raphael BJ, Dobson JR, Oesper L, Vandin F. Identifying driver mutations in sequenced cancer ge- nomes: computational approaches to enable precision medicine. Genome Med 2014, 6:5.
  53. Chin L, Hahn WC, Getz G, Meyerson M. Making sense of cancer genomic data. Genes Dev 2011, 25:534-555. doi: 10.1101/gad.2017311 PMID: 21406553
  54. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome land- scapes. Science 2013, 339:1546-1558. doi: 10.1126/science.1235122 PMID: 23539594
  55. Gonzalez-Perez A, Mustonen V, Reva B, Ritchie GR, Creixell P, Karchin R, et al. Computational ap- proaches to identify functional genetic variants in cancer genomes. Nat Methods 2013, 10:723-729. doi: 10.1038/nmeth.2562 PMID: 23900255