Academia.eduAcademia.edu

Outline

Large scale flow around turbulent spots

https://doi.org/10.1063/1.2768946

Abstract

Numerical simulations of a model of plane Couette flow focusing on its in-plane spatio-temporal properties are used to study the dynamics of turbulent spots.

References (27)

  1. N. Tillmark & P.H. Alfredsson, Experiments on transition in plane Cou- ette flow, J. Fluid Mech. 235 (1992) 89-102.
  2. F. Daviaud, J. Hegseth & P. Bergé, Subcritical transition to turbulence in plane Couette flow, Phys. Rev. Lett. 69 (1992) 2511-2514.
  3. O. Dauchot & F. Daviaud, Finite amplitude perturbation in plane Cou- ette flow, Europhysics letters. 28 (1994) 225-230.
  4. O. Dauchot & F. Daviaud, Finite amplitude perturbation and spots growth-mechanism in plane Couette flow, Physics of Fluids. 7 (2), (1995) 335-343.
  5. N. Tillmark, On the spreading mechanisms of a turbulent spot in plane Couette flow, Europhysics letters (1995)32 481-485.
  6. H.W. Emmons, The laminar-turbulent transition in a boundary layer, Part I, J. Aero. Sci. 18 (1951) 490-498.
  7. M. Gad-El-Hak, R.F. Blackwelder & J.J. Riley, On the growth of tur- bulent regions in laminar boundary layers, J. Fluid Mech. 110 (1981) 73-95.
  8. D.R. Carlson, S.E. Widnall & M.F. Peeters, A flow visualization of transition in plane Poiseuille flow, J. Fluid Mech. 121 (1982) 487-505.
  9. D.S. Henninson, A.V. Johansson & P.H. Alfredsson, Turbulent spots in channel flows, Journal of Engin. Math. 28 (1994) 21-42.
  10. J. Mathew & A. Das, Direct numerical simulation of spots, Current Science 79 (2000) 816-820.
  11. P. Manneville, Instabilities, Chaos and turbulence, Imperial College Press, 2004.
  12. A. Lundbladh & A.V. Johansson, Direct simulation of turbulent spots in plane Couette flow, J. Fluid Mech. 229, (1991) 499-516.
  13. A. Das & J. Mathew, Direct numerical simulation of turbulent spots, Computers & Fluids 30 (2001) 533-541.
  14. J. Schumacher & B. Eckhardt, Evolution of turbulent spots in a parallel shear flow, Physical Review E 63 (2001) 046307.
  15. F. Li & S.E. Widnall, Wave patterns in plane Poiseuille flow created by concentrated disturbances, J. Fluid Mech. 208 639-656 1989.
  16. F. Hayot & Y. Pomeau, Turbulent domain stabilization in annular flows, Phys. Rev. E 50, (1994) 2019-2021.
  17. D. Coles, Transition in circular Couette flow, J. Fluid Mech. 21 (1965) 385-425.
  18. A. Prigent, G. Grégoire, H. Chaté, O. Dauchot & W. van Saarloos, Large-scale finite-wavelength modulation within turbulent shear flows, Phys. Rev. Lett. 89 (2002) 014501.
  19. D. Barkley & L. Tuckerman, Mean Flow of Turbulent-Laminar Patterns in Plane Couette Flow, to appear in J. Fluid. Mech. (2007).
  20. S. Bottin, O. Dauchot, F. Daviaud & P. Manneville, Experimental evi- dence of streamwise vortices as finite amplitude solution in transitional plane Couette flow, Phys. Fluids 10 (1998) 2597-2607.
  21. M. Lagha, "Modeling the transition to turbulence in plane Couette flow," PhD Thesis, Ecole Polytechnique, 2006.
  22. P. Manneville, F. Locher, C.R. Acad. Sci. Paris 328 Serie IIb (2000) 159-164.
  23. D.S. Henningson & J. Kim, On turbulent spots in plane Poiseuille flow, J. Fluid Mech. 228 (1991) 183-205.
  24. A. Schröder & J. Kompenhans, Investigation of a turbulent spot using multi-plane stereo particle image velocimetry, Experiments in Fluids 36 (2004) 82-90.
  25. Panton R.L, Overview of the self-sustaining mechanisms of wall turbu- lence, Progress in Aerospace Sciences 37 (2001) 341-383.
  26. E.D. Siggia, A. Zippelius, Pattern selection in Rayleigh-Bnard convec- tion near threshold, Phys. Rev. Lett. 47 (1981) 835-838.
  27. According to the LES terminology, these terms should rather be calledresidual stresses, see: S.B. Pope, Turbulent flows, Cambridge Uni- versity Press, 2000, Ch. 13.