Variational theory of two-fluid hydrodynamic modes at unitarity
2008, Physical Review A
https://doi.org/10.1103/PHYSREVA.77.033608Abstract
AI
AI
This research investigates the variational approach to Landau's two-fluid hydrodynamics for superfluid Fermi gases at unitarity, particularly focusing on breathing and dipole mode frequencies in isotropic traps. The study reveals that the frequencies of in-phase modes remain nearly constant across various temperatures, offering insights into the temperature independence observed in recent experimental data.
References (40)
- L. D. Landau, J. Phys. U.S.S.R. 5, 71 (1941).
- I. M. Khalatnikov, An Introduction to the Theory of Su- perfluidity (W. A. Benjamin, New York, 1965).
- J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E. Thomas, Phys. Rev. Lett. 92, 150402 (2004).
- M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag, and R. Grimm, Phys. Rev. Lett. 92, 203201 (2004).
- E. Taylor and A. Griffin, Phys. Rev. A 72, 053630 (2005).
- V. B. Shenoy and T.-L. Ho, Phys. Rev. Lett. 80, 3895 (1998).
- Y. He, Q. Chen, C.-C. Chien, and K. Levin, e-print: arXiv:0704.1889.
- E. Zaremba, T. Nikuni, and A. Griffin, Journ. Low Temp. Phys. 116, 277 (1999).
- J. E. Thomas, J. Kinast, and A. Turlapov, Phys. Rev. Lett. 95, 120402 (2005).
- E. Taylor, H. Hu, X.-J. Liu, and A. Griffin, e-print: arXiv:0709.0698.
- R. Ozeri, N. Katz, J. Steinhauer, and N. Davidson, Rev. Mod. Phys. 77, 187 (2005).
- H. Hu, X.-J. Liu, and P. D. Drummond, Europhys. Lett. 74, 574 (2006); Phys. Rev. A 73, 023617 (2006).
- P. Nozières and S. Schmitt-Rink, Journ. Low Temp. Phys. 59, 195 (1985).
- G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004).
- A. Bulgac, J. E. Drut, and P. Magierski, Phys. Rev. Lett. 96, 090404 (2006).
- E. Burovski, N. Prokof'ev, B. Svistunov, and M. Troyer, Phys. Rev. Lett. 96, 160402 (2006).
- H. Hu, P. D. Drummond, and X.-J. Liu, Nature Physics 3, 469 (2007).
- E. Taylor, A. Griffin, N. Fukushima, and Y. Ohashi, Phys. Rev. A 74, 063626 (2006).
- N. Fukushima, Y. Ohashi, E. Taylor, and A. Griffin, Phys. Rev. A 75, 033609 (2007).
- H. Heiselberg, Phys. Rev. A 73, 013607 (2006).
- T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).
- S. Giorgini, L. P. Pitaevskii, and S. Stringari, e-print: arXiv:0706.3360v1.
- L. D. Landau and E. M. Lifshitz, Fluid Mechanics (El- sevier, Oxford, 2004).
- Y. Castin and R. Dum, Phys. Rev. Lett. 77, 5315 (1996);
- C. Menotti, P. Pedri, and S. Stringari, Phys. Rev. Lett. 89, 250402 (2002).
- P. R. Zilsel, Phys. Rev. 79, 309 (1950).
- S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).
- A. Griffin, W.-C. Wu, and S. Stringari, Phys. Rev. Lett. 78, 1838 (1997).
- G. M. Bruun and C. W. Clark, Phys. Rev. Lett. 83, 5415 (1999).
- C. J. Pethick and H. Smith, Bose-Einstein Condensa- tion in Dilute Gases (Cambridge University Press, Cam- bridge, 2002).
- V. K. Akkineni, D. M. Ceperley, and N. Trivedi, Phys. Rev. B 76, 165116 (2007).
- H. Shi and A. Griffin, Phys. Rep. 304, 1 (1998).
- E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2 (Butterworth-Heinemann, Oxford, 2002), Sec. 28.
- Y. He, C.-C. Chien, Q. Chen, and K. Levin, e-print: arXiv:0704.1751.
- Q. Chen, J. Stajic, and K. Levin, Phys. Rep. 412, 1 (2005).
- G. E. Astrakharchik, R. Combescot, X. Leyronas, and S. Stringari, Phys. Rev. Lett. 95, 030404 (2005).
- Y. Castin, Comptes Rendus Physique 5, 407 (2005).
- In addition to the assumption that two-fluid hydrody- namics is applicable, we have also made use of the scaling ansatz in Eq. (41) in arriving at the result in Eq. (85). As shown in Ref. [36], there is an exact eigenstate of the isotropic trap Hamiltonian such that all atoms move with velocity v(r, t) = ar cos ωt.
- M. A. Baranov and D. S. Petrov, Phys. Rev. A 58, R801 (1998).
- L. D. Landau and E. M. Lifshitz, Statistical Physics (El- sevier, Oxford, 2003).