Academia.eduAcademia.edu

Outline

Digital soil mapping: A brief history and some lessons

https://doi.org/10.1016/J.GEODERMA.2015.07.017

Abstract

Digital soil mapping (DSM) is a successful sub discipline of soil science with an active research output. The success of digital soil mapping is a confluence of several factors in the beginning of 2000 including the increased availability of spatial data (digital elevation model, satellite imagery), the availability of computing power for processing data, the development of data-mining tools and GIS, and numerous applications beyond geostatistics. In addition, there was an increased global demand for spatial data including uncertainty assessments, and a rejuvenation of many soil survey and university centres which helped in the spreading of digital soil mapping technologies and knowledge. The theoretical framework for digital soil mapping was formalised in a 2003 paper in Geoderma. In this paper, we define what constitutes digital soil mapping, sketch a brief history of it, and discuss some lessons. Digital soil mapping requires three components: the input in the form of field and laboratory observational methods, the process used in terms of spatial and non-spatial soil inference systems, and the output in the form of spatial soil information systems, which includes outputs in the form of rasters of prediction along with the uncertainty of prediction. We also illustrate the history with a number of sleeping beauty papers that seem too precocious and consequently the ideas were not taken up by contemporaries and largely forgotten. It took another 30 to 40 years before the ideas were rediscovered and then flourished. Examples include proximal soil sensing that was developed in the 1920s, soil spectroscopy in 1970s, and soil mapping based on similarity of environmental factors in 1979. In summary, the coming together of emerging topics and timeliness greatly assists in the development of paradigm. We learned that research and ideas that are too precocious are largely ignored — such work warrants (re)discovery.

References (148)

  1. Adhikari, K., Kheir, R.B., Greve, M.B., Bøcher, P.K., Malone, B.P., Minasny, B., McBratney, A.B., Greve, M.H., 2013. High-resolution 3-D mapping of soil texture in Denmark. Soil Sci. Soc. Am. J. 77, 860-876.
  2. Adhikari, K., Hartemink, A.E., Minasny, B., Kheir, R.B., Greve, M.B., Greve, M.H., 2014a. Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS One 9, e105519.
  3. Adhikari, K., Minasny, B., Greve, M.B., Greve, M.H., 2014b. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma 214-215, 101-113.
  4. Agbu, P.A., Fehrenbacher, D.J., Jansen, I.J., 1990. Soil property relationships with SPOT satellite digital data in east central Illinois. Soil Sci. Soc. Am. J. 54, 807-812.
  5. Akpa, S.I., Odeh, I.O., Bishop, T.F., Hartemink, A.E., 2014. Digital mapping of soil particle- size fractions for Nigeria. Soil Sci. Soc. Am. J. 78, 1953-1966.
  6. Al-Abbas, A., Swain, P., Baumgardner, M., 1972. Relating organic matter and clay content to the multispectral radiance of soils. Soil Sci. 114, 477-485.
  7. Arrouays, D., Pelissier, P., 1994. Modeling carbon storage profiles in temperate forest humic loamy soils of France. Soil Sci. 157, 185-192.
  8. Arrouays, D., Grundy, M.G., Hartemink, A.E., Hempel, J.W., Heuvelink, G.B.M., Hong, S.Y., Lagacherie, P., Lelyk, G., McBratney, A.B., McKenzie, N.J., Mendonca-Santos, M.D., Minasny, B., Montanarella, L., Odeh, I.O.A., Sanchez, P.A., Thompson, J.A., Zhang, G.L., 2014. GlobalSoilMap. Toward a fine-resolution global grid of soil properties. Adv. Agron. 93-134.
  9. Bazaglia Filho, O., Rizzo, R., Lepsch, I.F., Prado, H.d., Gomes, F.H., Mazza, J.A., Demattê, J.A.M., 2013. Comparison between detailed digital and conventional soil maps of an area with complex geology. Rev. Bras. Ciênc. Solo 37, 1136-1148.
  10. Bell, J.C., Cunningham, R.L., Havens, M.W., 1992. Calibration and validation of a soil- landscape model for predicting soil drainage class. Soil Sci. Soc. Am. J. 56, 1860-1866.
  11. Bellon-Maurel, V., McBratney, A., 2011. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils -critical review and research perspectives. Soil Biol. Biochem. 43, 1398-1410.
  12. Ben-Dor, E., Inbar, Y., Chen, Y., 1997. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400-2500 nm) during a controlled decomposition process. Remote Sens. Environ. 61, 1-15.
  13. Bliss, N.B., Reybold, W.U., 1989. Small-scale digital soil maps for interpreting natural re- sources. J. Soil Water Conserv. 44, 30-34.
  14. Bliss, N.B., Waltman, S.W., Petersen, G.W., 1995. Preparing a soil carbon inventory for the United States using geographic information systems. Soil Glob. Chang. 275-295.
  15. Boettinger, J.L., 2010. Digital Soil Mapping: Bridging Research, Environmental Application, and Operation. Springer Science & Business Media.
  16. Bou Kheir, R., Greve, M.H., Bøcher, P.K., Greve, M.B., Larsen, R., McCloy, K., 2010. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: the case study of Denmark. J. Environ. Manag. 91, 1150-1160.
  17. Brown, D.J., 2006. A historical perspective on soil-landscape modeling. In: Grunwald, S. (Ed.), Environmental Soil-Landscape Modeling: Geographic Information Technolo- gies and Pedometrics. Taylor & Francis, Boca Raton, p. 61.
  18. Brown, D.J., Shepherd, K.D., Walsh, M.G., Dewayne Mays, M., Reinsch, T.G., 2006. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132, 273-290.
  19. Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A., Edwards, T.C., 2015. Machine learn- ing for predicting soil classes in three semi-arid landscapes. Geoderma 239, 68-83.
  20. Bui, E., 2006. A review of digital soil mapping in Australia. In: Lagacherie, A.B.M., Voltz, M. (Eds.), Developments in Soil Science. Elsevier, pp. 25-37.
  21. Bui, E.N., Moran, C.J., 2003. A strategy to fill gaps in soil survey over large spatial extents: an example from the Murray-Darling basin of Australia. Geoderma 111, 21-44.
  22. Burgess, T., Webster, R., 1980. Optimal interpolation and isarithmic mapping of soil prop- erties. I. The semi-variogram and punctual kriging. J. Soil Sci. 31, 315-331.
  23. Burrough, P.A., 1986. Principles of Geographical Information Systems for Land Resources Assessment. Taylor & Francis.
  24. Burrough, P., Bie, S.W., 1984. Soil information systems technology, Proceedings of the Sixth Meeting of the ISSS Working Group on Soil Information Systems. Centre for Ag- ricultural Publishing and Documentation, Bolkesjo, Norway.
  25. Bushnell, T., 1929. Aerial photography and soil survey. Am. Assoc. Soil Surv. Bull. 10, 23-28.
  26. Bushnell, T., 1943. Some aspects of the soil catena concept. Soil Sci. Soc. Am. J. 7, 466-476.
  27. Butler, B.E., 1959. Periodic Phenomena in Landscapes as a Basis for Soil Studies. CSIRO Australia.
  28. Carré, F., McBratney, A.B., Mayr, T., Montanarella, L., 2007. Digital soil assessments: be- yond DSM. Geoderma 142, 69-79.
  29. Chaney, N.W., hempel, J.W., Odgers, N., McBratney, A.B., Wood, E.F., 2014. Spatial disag- gregation and harmonization of gSSURGO. ASA, CSSA, & SSSA International Annual Meeting. American Society of Agronomy, Long Beach, CA.
  30. Cipra, J.E., 1973. Mapping soil associations using ERTS MSS data. LARS Technical Reports, p. 117.
  31. Collard, F., Kempen, B., Heuvelink, G.B.M., Saby, N.P.A., Richer de Forges, A.C., Lehmann, S., Nehlig, P., Arrouays, D., 2014. Refining a reconnaissance soil map by calibrating regression models with data from the same map (Normandy, France). Geoderma Reg. 1, 21-30.
  32. Cook, S., Corner, R., Groves, P., Grealish, G., 1996a. Use of airborne gamma radiometric data for soil mapping. Soil Res. 34, 183-194.
  33. Cook, S.E., Corner, R.J., Grealish, G., Gessler, P.E., Chartres, C.J., 1996b. A rule-based system to map soil properties. Soil Sci. Soc. Am. J. 60, 1893-1900.
  34. Dai, Y., Shangguan, W., Duan, Q., Liu, B., Fu, S., Niu, G., 2013. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeorol. 14, 869-887.
  35. De Gruijter, J.J., Bie, S.W., 1975. A discrete approach to automated mapping of multivariate systems. Trans. Comm. III Inter. Cartogr. Assoc, Enschede, pp. 17-28.
  36. Dobos, E., Norman, B., Worstell, B., et al., 2002. The use of DEM and satellite data for regional scale soil databases. Agrokém. Talajt. 51, 263-272.
  37. Field, D.J., Minasny, B., 2008. Comments on "modeling energy inputs to predict pedogenic environments using regional environmental databases". Soil Sci. Soc. Am. J. 72, 858-859.
  38. Florinsky, I.V., 2012. The Dokuchaev hypothesis as a basis for predictive digital soil map- ping (on the 125th anniversary of its publication). Eurasian Soil Sci. 45, 445-451.
  39. Franklin, J., 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog. Phys. Geogr. 19, 474-499.
  40. Franklin, J., 2010. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press.
  41. Frazier, B.E., Cheng, Y., 1989. Remote sensing of soils in the Eastern Palouse region with Landsat Thematic Mapper. Remote Sens. Environ. 28, 317-325.
  42. Gallant, J.C., Wilson, J.P., 1996. TAPES-G: a grid-based terrain analysis program for the environmental sciences. Comput. Geosci. Uk 22, 713-722.
  43. Gessler, P.E., Moore, I.D., McKenzie, N.J., Ryan, P.J., 1995. Soil-landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421-432.
  44. Giltrap, D.J., 1983. Computer production of soil maps, I. Production of grid maps by interpolation. Geoderma 29, 295-311.
  45. Gray, J.M., Bishop, T.F., Yang, X., 2015. Pragmatic models for the prediction and digital mapping of soil properties in eastern Australia. Soil Res 53 (1), 24-42.
  46. Grinand, C., Arrouays, D., Laroche, B., Martin, M.P., 2008. Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context. Geoderma 143, 180-190.
  47. Grunwald, S., 2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 152, 195-207.
  48. Grunwald, S., Thompson, J.A., Boettinger, J.L., 2011. Digital soil mapping and modeling at continental scales: finding solutions for global issues. Soil Sci. Soc. Am. J. 75, 1201-1213.
  49. Haines, W.B., Keen, B.A., 1925a. Studies in soil cultivation. II. A test of soil uniformity by means of dynamometer and plough. J. Agric. Sci. 15, 387-394.
  50. Haines, W.B., Keen, B.A., 1925b. Studies in soil cultivation. III. Measurements on the Rothamsted classical plots by means of dynamometer and plough. J. Agric. Sci. 15, 395-406.
  51. Hajrasuliha, S., Baniabbassi, N., Metthey, J., Nielsen, D.R., 1980. Spatial variability of soil sampling for salinity studies in Southwest Iran. Irrig. Sci. 1, 197-208.
  52. Häring, T., Dietz, E., Osenstetter, S., Koschitzki, T., Schröder, B., 2012. Spatial disaggrega- tion of complex soil map units: a decision-tree based approach in Bavarian forest soils. Geoderma 185-186, 37-47.
  53. Harms, B., Brough, D., Philip, S., Bartley, R., Clifford, D., Thomas, M., Willis, R., Gregory, L., 2015. Digital soil assessment for regional agricultural land evaluation. Glob. Food Secur. 5, 25-36.
  54. Hartemink, A.E., McBratney, A., 2008. A soil science renaissance. Geoderma 148, 123-129.
  55. Hartemink, A.E., Minasny, B., 2014. Towards digital soil morphometrics. Geoderma 230-231, 305-317.
  56. Hartemink, A.E., McBratney, A., de Lourdes Mendonça-Santos, M., 2008. Digital Soil Mapping with Limited Data. Springer Science & Business Media.
  57. Hartemink, A.E., Krasilnikov, P., Bockheim, J.G., 2013. Soil maps of the world. Geoderma 207-208, 256-267.
  58. Hempel, J., McBratney, A., Arrouays, D., McKenzie, N., Hartemink, A., 2014. GlobalSoilMap project history. In: Arrouays, D., McKenzie, N., Hempel, J., Richer de Forges, A.C., McBratney, A.B. (Eds.), GlobalSoilMap: Basis of the global spatial soil information system. Taylor & Francis, London, pp. 3-8.
  59. Henderson, B.L., Bui, E.N., Moran, C.J., Simon, D.A.P., 2005. Australia-wide predictions of soil properties using decision trees. Geoderma 124, 383-398.
  60. Hong, S.Y., Minasny, B., Han, K.H., Kim, Y., Lee, K., 2013. Predicting and mapping soil available water capacity in Korea. Peer J. 1, e71. http://dx.doi.org/10.7717/peerj.71.
  61. Hudson, B.D., 1992. The soil survey as paradigm-based science. Soil Sci. Soc. Am. J. 56, 836-841.
  62. Irvin, B.J., Ventura, S.J., Slater, B.K., 1997. Fuzzy and isodata classification of landform ele- ments from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 77, 137-154.
  63. Jenny, H., Salem, A.E., Wallis, J.R., 1968. Interplay of soil organic matter and soil fertility with state factors and soil properties. "Organic matter and soil fertility". Pontif. Acad. Sci. Scr. varia 32, 5-36.
  64. Karale, R., Bali, Y., Rao, K.S., 1983. Soil mapping using remote sensing techniques. Proc. Indian Acad. Sci. Chem. Sci. 6, 197-208.
  65. Ke, Q., Ferrara, E., Radicchi, F., Flammini, A., 2015. Defining and identifying sleeping beauties in science. Proc. Natl. Acad. Sci. 112, 7426-7431.
  66. Keen, B.A., Haines, W.B., 1925. Studies in soil cultivation. I. The evolution of a reliable dyna- mometer technique for use in soil cultivation experiments. J. Agric. Sci. 15, 375-386.
  67. Kempen, B., Heuvelink, G., Brus, D., Stoorvogel, J., 2010. Pedometric mapping of soil organ- ic matter using a soil map with quantified uncertainty. Eur. J. Soil Sci. 61, 333-347.
  68. Kidd, D.B., Webb, M.A., Grose, C.J., Moreton, R.M., Malone, B.P., McBratney, A.B., Minasny, B., Viscarra-Rossel, R.A., Cotching, W.E., Sparrow, L.A., Smith, R., 2012. Digital soil as- sessment: guiding irrigation expansion in Tasmania, Australia. Digital Soil Assess- ments and Beyond -Proceedings of the Fifth Global Workshop on Digital Soil Mapping, pp. 3-8.
  69. Kidd, D., Malone, B., McBratney, A., Minasny, B., Webb, M., 2015. Operational sampling challenges to digital soil mapping in Tasmania, Australia. Geoderma Reg. 4, 1-10.
  70. Kornblau, M., Cipra, J., 1983. Investigation of digital Landsat data for mapping soils under range vegetation. Remote Sens. Environ. 13, 103-112.
  71. Kosaki, T., Torii, K., Kyuma, K., 1982. Automated soil map compilation. Soil Sci. Plant Nutr. 28, 389-399.
  72. Krasilnikov, P., 2014. Digital soil assessments and beyond, by Budiman MinasnyProceedings of the Fifth Global Workshop on Digital Soil Mapping, Sydney, Australia, 10-13 April 2012. In: Malone, Brendan P., McBratney, Alex B. (Eds.), Geoderma 213. CRC Press, Boca Raton, pp. 131-132 (2012).
  73. Kristof, S., Baumgardner, M., Johannsen, C., 1973. Spectral Mapping of Soil Organic Matter. LARS Technical Reports, p. 26.
  74. Lagacherie, P., 1992. Formalisation des lois de distribution des sols pour automatiser la cartographie pédologique à partir d'un secteur pris comme référence.
  75. Lagacherie, P., McBratney, A.B., 2006. Chapter 1 spatial soil information systems and spa- tial soil inference systems: perspectives for digital soil mapping. Dev. Soil Sci. 3-22.
  76. Lagacherie, P., Legros, J.P., Burfough, P.A., 1995. A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area. Geoderma 65, 283-301.
  77. Lagacherie, P., McBratney, A., Voltz, M., 2006. Digital Soil Mapping: An Introductory Perspective. Elsevier.
  78. Lathrop Jr., R.G., Aber, J.D., Bognar, J.A., 1995. Spatial variability of digital soil maps and its impact on regional ecosystem modeling. Ecol. Model. 82, 1-10.
  79. Legros, J.-P., 2006. Mapping of the Soil. Science Publishers.
  80. Legros, J., Bonneric, P., 1979. Modelisation informatique de la repartition des sols dans le Parc Naturel Régional du Pilat 4. Annales de l'Université de Savoie, Tome, pp. 63-68.
  81. Legros, J., Hensel, E., 1978. INRA 6-computer assisted cartographic system. In: Sadovski, A.N., Bie, S. (Eds.), Developments in Soil Information Systems 2. Meeting of the ISSS Working Group on Soil Information Systems. Centre for Agricultural Publishing and Documentation, Varna/Sofia, Bulgaria, pp. 95-96.
  82. Lorenzetti, R., Barbetti, R., Fantappiè, M., L'Abate, G., Costantini, E.A., 2015. Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps. Geoderma 237, 237-245.
  83. Malone, B.P., McBratney, A.B., Minasny, B., Laslett, G.M., 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 154, 138-152.
  84. Malone, B.P., McBratney, A.B., Minasny, B., 2011. Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma 160, 614-626.
  85. Malone, B.P., Minasny, B., Odgers, N.P., McBratney, A.B., 2014. Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma 232, 34-44.
  86. Mathews, H., Cunningham, R., Petersen, G., 1973. Spectral reflectance of selected Pennsyl- vania soils. Soil Sci. Soc. Am. J. 37, 421-424.
  87. McBratney, A., Gruijter, J.d., 1992. A continuum approach to soil classification by modified fuzzy k-means with extragrades. J. Soil Sci. 43, 159-175.
  88. McBratney, A.B., Minasny, B., 2010. The sun has shone here antecedently. In: Viscarra Rossel, R.A., McBratney, A.B., Minasny, B. (Eds.), Proximal Soil Sensing. Springer, Netherlands, pp. 67-75.
  89. McBratney, A.B., Odeh, I.O.A., 1997. Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma 77, 85-113.
  90. McBratney, A.B., Odeh, I.O.A., Bishop, T.F.A., Dunbar, M.S., Shatar, T.M., 2000. An overview of pedometric techniques for use in soil survey. Geoderma 97, 293-327.
  91. McBratney, A.B., Mendonça Santos, M.L., Minasny, B., 2003. On digital soil mapping. Geoderma 117, 3-52.
  92. McBratney, A.B., Minasny, B., Whelan, B., 2011. Defining proximal soil sensing. The Second Global Workshop on Proximal Soil Sensing Montreal.
  93. McKenzie, N.J., Austin, M.P., 1993. A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation. Geoderma 57, 329-355.
  94. McKenzie, N.J., Ryan, P.J., 1999. Spatial prediction of soil properties using environmental correlation. Geoderma 89, 67-94.
  95. Mendonça-Santos, M., dos Santos, H., 2006. The state of the art of Brazilian soil mapping and prospects for digital soil mapping. Dev. Soil Sci. 31, 39-601.
  96. Miller, B.A., Schaetzl, R.J., 2014. The historical role of base maps in soil geography. Geoderma 230-231, 329-339.
  97. Minasny, B., Malone, B.P., McBratney, A.B., 2012. Digital Soil Assessments and Beyond: Proceedings of the 5th Global Workshop on Digital Soil Mapping 2012, Sydney. CRC Press, Australia.
  98. Moore, G.E., 1998. Cramming more components onto integrated circuits. Proc. IEEE 86, 82-85.
  99. Moore, I.D., Gessler, P.E., Nielsen, G.A., Peterson, G.A., 1993. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J. 57, 443-452.
  100. Moran, C.J., Bui, E.N., 2002. Spatial data mining for enhanced soil map modelling. Int. J. Geogr. Inf. Sci. 16, 533-549.
  101. Mulder, V.L., de Bruin, S., Schaepman, M.E., Mayr, T.R., 2011. The use of remote sensing in soil and terrain mapping -a review. Geoderma 162, 1-19.
  102. Odeh, I.O., Chittleborough, D.J., McBratney, A.B., 1992a. Fuzzy-c-means and kriging for mapping soil as a continuous system. Soil Sci. Soc. Am. J. 56, 1848-1854.
  103. Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J., 1992b. Soil pattern recognition with fuzzy-c-means: application to classification and soil-landform interrelationships. Soil Sci. Soc. Am. J. 56, 505-516.
  104. Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J., 1994. Spatial prediction of soil proper- ties from landform attributes derived from a digital elevation model. Geoderma 63, 197-214.
  105. Odgers, N.P., Libohova, Z., Thompson, J.A., 2012. Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale. Geoderma 189-190, 153-163.
  106. Odgers, N.P., Sun, W., McBratney, A.B., Minasny, B., Clifford, D., 2014. Disaggregating and harmonising soil map units through resampled classification trees. Geoderma 214-215, 91-100.
  107. Pachepsky, Y.A., Timlin, D., Várallyay, G., 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Soc. Am. J. 60, 727-733.
  108. Padarian, J., Minasny, B., McBratney, A.B., 2015w. Using Google's web-based platform for digital soil mapping. Comput. Geosci. 83, 80-88.
  109. Prescott, J.A., Taylor, J.K., 1930. The value of aerial photography in relation to soil surveys and classification. CSIR Aust. J. 3, 229-230.
  110. Ragg, J.M., 1977. The recording and organization of soil field data for computer areal mapping. Geoderma 19, 81-89.
  111. Rasmussen, C., Tabor, N.J., 2007. Applying a quantitative pedogenic energy model across a range of environmental gradients. Soil Sci. Soc. Am. J. 71, 1719-1729.
  112. Rasmussen, C., Southard, R.J., Horwath, W.R., 2005. Modeling energy inputs to predict pedogenic environments using regional environmental databases. Soil Sci. Soc. Am. J. 69, 1266-1274.
  113. Ruhe, R.V., 1956. Geomorphic surfaces and the nature of soils. Soil Sci. 82, 441-456.
  114. Runge, E.C.A., 1973. Soil development sequences and energy models. Soil Sci. 115, 183-193.
  115. Ryan, P.J., McKenzie, N.J., O'Connell, D., Loughhead, A.N., Leppert, P.M., Jacquier, D., Ashton, L., 2000. Integrating forest soils information across scales: spatial prediction of soil properties under Australian forests. For. Ecol. Manag. 138, 139-157.
  116. Sadovski, A.N., Bie, S.W., 1977. Developments in soil information system. Proceedings of the Second Meeting of the ISSS Working Groups on Soil Information System. Centre for Agricultureal Publishing & Documentation, Wageningen.
  117. Sarathjith, M.C., Das, B.S., Wani, S.P., Sahrawat, K.L., 2014. Dependency measures for assessing the covariation of spectrally active and inactive soil properties in diffuse reflectance spectroscopy. Soil Sci. Soc. Am. J. 78, 1522-1530.
  118. Scull, P., Franklin, J., Chadwick, O.A., McArthur, D., 2003. Predictive soil mapping: a review. Prog. Phys. Geogr. 27, 171-197.
  119. Shepherd, K.D., Walsh, M.G., 2002. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 66, 988-998.
  120. Shi, X., Zhu, A.X., Burt, J.E., Qi, F., Simonson, D., 2004. A case-based reasoning approach to fuzzy soil mapping. Soil Sci. Soc. Am. J. 68, 885-894.
  121. Shovic, H.F., Montagne, C., 1985. Application of a statistical soil-landscape model to an order III wildland soil survey. Soil Sci. Soc. Am. J. 49, 961-968.
  122. Singh, A., 1980. Comparison of reconnaissance soil maps prepared by conventional method and Landsat imagery interpretation. J. Indian Soc. Photo Interpretation Re- mote. Sens. 8, 1-8.
  123. Skidmore, A.K., Ryan, P.J., Dawes, W., Short, D., Emmett, O.L., 1991. Use of an expert system to map forest soils from a geographical information system. Int. J. Geogr. Inf. Syst. 5, 431-445.
  124. Skidmore, A.K., Watford, F., Luckananurug, P., Ryan, P., 1996. An operational GIS expert system for mapping forest soils. Photogramm. Eng. Remote. Sens. 62, 501-511.
  125. Slater, B.K., 1994. Continuous Classification and Visualization of Soil layers: A Soil- Landscape Model of Pleasant Valley Wisconsin. University of Wisconsin-Madison, Madison.
  126. Stafford, J., Hendrick, J., 1985. Dynamic control of pan rupturing tines. Trans. ASABE 31, 9-13.
  127. Stenberg, B., Rossel, R.A.V., Mouazen, A.M., Wetterlind, J., 2010. Visible and near infrared spectroscopy in soil science. Adv. Agron. 107, 163-215.
  128. Stoner, E.R., Baumgardner, M., 1981. Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J. 45, 1161-1165.
  129. Stoner, E.R., Biehl, L.L., 1980. Development of a digital data base for reflectance-related soil information. LARS Technical Reports, p. 60.
  130. Subburayalu, S.K., Slater, B.K., 2013. Soil series mapping by knowledge discovery from an Ohio county soil map. Soil Sci. Soc. Am. J. 77, 1254-1268.
  131. Sun, Y., Ma, D., Schulze Lammers, P., Schmittmann, O., Rose, M., 2006. On-the-go measure- ment of soil water content and mechanical resistance by a combined horizontal penetrometer. Soil Tillage Res. 86, 209-217.
  132. Tomlinson, R., 1978. Design considerations for digital soil map systems. 11th Congress of Soil Science. ISSS, Edmonton, Canada.
  133. Troeh, F.R., 1964. Landform parameters correlated to soil drainage. Soil Sci. Soc. Am. J. 28, 808-812.
  134. Van Raan, A.F., 2004. Sleeping beauties in science. Scientometrics 59, 467-472.
  135. van Zijl, G.M., Bouwer, D., van Tol, J.J., le Roux, P.A.L., 2014. Functional digital soil mapping: a case study from Namarroi, Mozambique. Geoderma 219-220, 155-161.
  136. Vauclin, M., Vieira, S.R., Vachaud, G., Nielsen, D.R., 1983. The use of cokriging with limited field soil observations. Soil Sci. Soc. Am. J. 47, 175-184.
  137. Vieira, S.R., Nielsen, D., Biggar, J., 1981. Spatial variability of field-measured infiltration rate. Soil Sci. Soc. Am. J. 45, 1040-1048.
  138. Vieira, S., Hatfield, J., Nielsen, D., Biggar, J., 1983. Geostatistical theory and application to variability of some agronomical properties. Hilgardia 51, 1-73.
  139. Viscarra Rossel, R.A., McBratney, A.B., Minasny, B., 2010. Proximal Soil Sensing. Springer Science & Business Media.
  140. Volobuyev, V., 1964. Ecology of Soils Academy of Sciences of the Azerbaijan SSR. Israel Program for Scientific Translations, Jerusalem.
  141. Walker, P., Hall, G., Protz, R., 1968. Relation between landform parameters and soil properties. Soil Sci. Soc. Am. J. 32, 101-104.
  142. Webster, R., 1994. The development of pedometrics. Geoderma 62, 1-15.
  143. Webster, R., Burrough, P.A., 1972. Computer-based soil mapping of small areas from sample data. J. Soil Sci. 23, 222-234.
  144. Webster, R., Harrod, T., Staines, S., Hogan, D., 1979. Grid sampling and computer mapping of the Ivybridge area, Devon. Technical Monograph. Soil Survey of England and Wales, Harpenden, p. 64.
  145. Wösten, J., Finke, P., Jansen, M., 1995. Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66, 227-237.
  146. Yaalon, D.H., 1989. The Earliest Soil Maps and Their Logic. Bulletin of the International Society of Soil Science. International Society of Soil Science, Wageningen p. 24.
  147. Zhu, A.-X., Band, L.E., Dutton, B., Nimlos, T.J., 1996. Automated soil inference under fuzzy logic. Ecol. Model. 90, 123-145.
  148. Zhu, A.X., Band, L., Vertessy, R., Dutton, B., 1997. Derivation of soil properties using a soil land inference model (SoLIM). Soil Sci. Soc. Am. J. 61, 523-533.