Academia.eduAcademia.edu

Outline

NO· Binds Human Cystathionine β-synthase Quickly and Tightly

Journal of Biological Chemistry

https://doi.org/10.1074/JBC.M113.507533

Abstract

The hexa-coordinate heme in the H2S-generating human enzyme cystathionine β-synthase (CBS) acts as a redox-sensitive regulator that impairs CBS activity upon binding NO· or CO at the reduced iron. Despite the proposed physiological relevance of this inhibitory mechanism, unlike CO, NO· was reported to bind at the CBS heme with very low affinity (Kd = 30-281 μM). This discrepancy was herein reconciled by investigating the NO· reactivity of recombinant human CBS by static and stopped-flow UV-visible absorption spectroscopy. We found that NO· binds tightly to the ferrous CBS heme, with an apparent Kd ≤ 0.25 μM. In line with this result, at 25°C, NO· binds quickly to CBS (kon ~ 8 x 10(3) M(-1) s(-1)) and dissociates slowly from the enzyme (koff ~ 0,003 s(-1)). The observed rate constants for NO· binding were found to be linearly dependent on [NO·] up to ~ 800 μM NO·, and > 100-fold higher than those measured for CO, indicating that the reaction is not limited by the slow dissociation...

References (44)

  1. Kabil, O., and Banerjee, R. (2014) Enzymology of H 2 S biogenesis, decay and signaling. Antioxid. Redox Signal. 20, 770 -782
  2. Kajimura, M., Fukuda, R., Bateman, R. M., Yamamoto, T., and Suematsu, M. (2010) Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H 2 S gas biology. Antioxid. Redox Signal. 13, 157-192
  3. Mustafa, A. K., Gadalla, M. M., and Snyder, S. H. (2009) Signaling by gasotransmitters. Sci. Signal. 2, re2
  4. Li, L., Hsu, A., and Moore, P. K. (2009) Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular sys- tem and in inflammation: a tale of three gases. Pharmacol. Ther. 123, 386 -400
  5. Kabil, O., and Banerjee, R. (2010) Redox biochemistry of hydrogen sulfide. J. Biol. Chem. 285, 21903-21907
  6. Singh, S., Padovani, D., Leslie, R. A., Chiku, T., and Banerjee, R. (2009) Relative contributions of cystathionine ␤-synthase and ␥-cystathionase to H 2 S biogenesis via alternative trans-sulfuration reactions. J. Biol. Chem. 284, 22457-22466
  7. Yadav, P. K., Yamada, K., Chiku, T., Koutmos, M., and Banerjee, R. (2013) Structure and kinetic analysis of H 2 S production by human mercaptopy- ruvate sulfurtransferase. J. Biol. Chem. 288, 20002-20013
  8. Pey, A. L., Majtan, T., Sanchez-Ruiz, J. M., and Kraus, J. P. (2013) Human cystathionine ␤-synthase (CBS) contains two classes of binding sites for S-adenosylmethionine (SAM): complex regulation of CBS activity and stability by SAM. Biochem. J. 449, 109 -121
  9. Koutmos, M., Kabil, O., Smith, J. L., and Banerjee, R. (2010) Structural basis for substrate activation and regulation by cystathionine ␤-synthase (CBS) domains in cystathionine ␤-synthase. Proc. Natl. Acad. Sci. U.S.A. 107, 20958 -20963
  10. Meier, M., Janosik, M., Kery, V., Kraus, J. P., and Burkhard, P. (2001) Structure of human cystathionine ␤-synthase: a unique pyridoxal 5Ј- phosphate-dependent heme protein. EMBO J. 20, 3910 -3916
  11. Taoka, S., Lepore, B. W., Kabil, O., Ojha, S., Ringe, D., and Banerjee, R. (2002) Human cystathionine ␤-synthase is a heme sensor protein: evi- dence that the redox sensor is heme and not the vicinal cysteines in the CXXC motif seen in the crystal structure of the truncated enzyme. Bio- chemistry 41, 10454 -10461
  12. Su, Y., Majtan, T., Freeman, K. M., Linck, R., Ponter, S., Kraus, J. P., and Burstyn, J. N. (2013) Comparative study of enzyme activity and heme reactivity in Drosophila melanogaster and Homo sapiens cystathionine ␤-synthases. Biochemistry 52, 741-751
  13. Singh, S., Madzelan, P., Stasser, J., Weeks, C. L., Becker, D., Spiro, T. G., Penner-Hahn, J., and Banerjee, R. (2009) Modulation of the heme elec- tronic structure and cystathionine ␤-synthase activity by second coordi- nation sphere ligands: the role of heme ligand switching in redox regula- tion. J. Inorg. Biochem. 103, 689 -697
  14. Kabil, O., Weeks, C. L., Carballal, S., Gherasim, C., Alvarez, B., Spiro, T. G., and Banerjee, R. (2011) Reversible heme-dependent regulation of human cystathionine ␤-synthase by a flavoprotein oxidoreductase. Biochemistry 50, 8261-8263
  15. Carballal, S., Cuevasanta, E., Marmisolle, I., Kabil, O., Gherasim, C., Bal- lou, D. P., Banerjee, R., and Alvarez, B. (2013) Kinetics of reversible reduc- tive carbonylation of heme in human cystathionine ␤-synthase. Biochem- istry 52, 4553-4562
  16. Taoka, S., West, M., and Banerjee, R. (1999) Characterization of the heme and pyridoxal phosphate cofactors of human cystathionine ␤-synthase reveals nonequivalent active sites. Biochemistry 38, 2738 -2744
  17. Weeks, C. L., Singh, S., Madzelan, P., Banerjee, R., and Spiro, T. G. (2009) Heme regulation of human cystathionine ␤-synthase activity: insights from fluorescence and Raman spectroscopy. J. Am. Chem. Soc. 131, 12809 -12816
  18. Smith, A. T., Su, Y., Stevens, D. J., Majtan, T., Kraus, J. P., and Burstyn, J. N. (2012) Effect of the disease-causing R266K mutation on the heme and PLP environments of human cystathionine ␤-synthase. Biochemistry 51, 6360 -6370
  19. Puranik, M., Weeks, C. L., Lahaye, D., Kabil, O., Taoka, S., Nielsen, S. B., Groves, J. T., Banerjee, R., and Spiro, T. G. (2006) Dynamics of carbon monoxide binding to cystathionine ␤-synthase. J. Biol. Chem. 281, 13433-13438
  20. Taoka, S., and Banerjee, R. (2001) Characterization of NO binding to hu- man cystathionine ␤-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J. Inorg. Biochem. 87, 245-251
  21. Gherasim, C., Yadav, P. K., Kabil, O., Niu, W. N., and Banerjee, R. (2014) Nitrite reductase activity and inhibition of H 2 S biogenesis by human cys- tathionine ␤-synthase. PLoS One 9, e85544
  22. Carballal, S., Madzelan, P., Zinola, C. F., Gran ˜a, M., Radi, R., Banerjee, R., and Alvarez, B. (2008) Dioxygen reactivity and heme redox potential of truncated human cystathionine ␤-synthase. Biochemistry 47, 3194 -3201
  23. Prathapasinghe, G. A., Siow, Y. L., Xu, Z., and O., K. (2008) Inhibition of cystathionine-␤-synthase activity during renal ischemia-reperfusion: role of pH and nitric oxide. Am. J. Physiol. Renal Physiol. 295, F912-F922
  24. Morikawa, T., Kajimura, M., Nakamura, T., Hishiki, T., Nakanishi, T., Yukutake, Y., Nagahata, Y., Ishikawa, M., Hattori, K., Takenouchi, T., Takahashi, T., Ishii, I., Matsubara, K., Kabe, Y., Uchiyama, S., Nagata, E., Gadalla, M. M., Snyder, S. H., and Suematsu, M. (2012) Hypoxic regula- tion of the cerebral microcirculation is mediated by a carbon monoxide- sensitive hydrogen sulfide pathway. Proc. Natl. Acad. Sci. U.S.A. 109, 1293-1298
  25. Mendes, M. I., Colac ¸o, H. G., Smith, D. E., Ramos, R. J., Pop, A., van Dooren, S. J., de Almeida, I. T., Kluijtmans, L. A., Janssen, M. C., Rivera, I., Salomons, G. S., Leandro, P., and Blom, H. J. (2014) Reduced response of cystathionine ␤-synthase (CBS) to S-adenosylmethionine (SAM): identi- fication and functional analysis of CBS gene mutations in homocystinuria patients. J. Inherit. Metab. Dis. 10.1007/s10545-013-9647-6
  26. Stubauer, G., Giuffre `, A., Brunori, M., and Sarti, P. (1998) Cytochrome c oxidase does not catalyze the anaerobic reduction of NO. Biochem. Bio- phys. Res. Commun. 245, 459 -465
  27. Dixon, M. (1971) The acceptor specificity of flavins and flavoproteins. I. Techniques for anaerobic spectrophotometry. Biochim. Biophys. Acta 226, 241-258
  28. Henry, E. R., and Hofrichter, J. (1992) Singular value decomposition: ap- plication to analysis of experimental data. Methods Enzymol. 210, 129 -192
  29. Moore, E. G., and Gibson, Q. H. (1976) Cooperativity in the dissociation of nitric oxide from hemoglobin. J. Biol. Chem. 251, 2788 -2794
  30. Kwiatkoski, M., Soriano, R. N., Francescato, H. D., Batalhao, M. E., Coim- T.
  31. M., Carnio, E. C., and Branco, L. G. (2012) Hydrogen sulfide as a cryogenic mediator of hypoxia-induced anapyrexia. Neuroscience 201, 146 -156
  32. Tang, X. Q., Fang, H. R., Zhou, C. F., Zhuang, Y. Y., Zhang, P., Gu, H. F., and Hu, B. (2013) A novel mechanism of formaldehyde neurotoxicity: inhibition of hydrogen sulfide generation by promoting overproduction of nitric oxide. PLoS One 8, e54829
  33. Igarashi, J., Sato, A., Kitagawa, T., Yoshimura, T., Yamauchi, S., Sagami, I., and Shimizu, T. (2004) Activation of heme-regulated eukaryotic initiation factor 2␣ kinase by nitric oxide is induced by the formation of a five- coordinate NO-heme complex: optical absorption, electron spin reso- nance, and resonance Raman spectral studies. J. Biol. Chem. 279, 15752-15762
  34. Ojha, S., Hwang, J., Kabil, O., Penner-Hahn, J. E., and Banerjee, R. (2000) Characterization of the heme in human cystathionine ␤-synthase by x-ray absorption and electron paramagnetic resonance spectroscopies. Bio- chemistry 39, 10542-10547
  35. Martin, E., Berka, V., Sharina, I., and Tsai, A. L. (2012) Mechanism of binding of NO to soluble guanylyl cyclase: implication for the second NO binding to the heme proximal site. Biochemistry 51, 2737-2746
  36. Tsai, A. L., Martin, E., Berka, V., and Olson, J. S. (2012) How do heme- protein sensors exclude oxygen? Lessons learned from cytochrome cЈ, Nostoc puntiforme heme nitric oxide/oxygen-binding domain, and soluble guanylyl cyclase. Antioxid. Redox Signal. 17, 1246 -1263
  37. Tsai, A. L., Berka, V., Martin, E., and Olson, J. S. (2012) A "sliding scale rule" for selectivity among NO, CO, and O 2 by heme protein sensors. Biochemistry 51, 172-186
  38. Kakar, S., Hoffman, F. G., Storz, J. F., Fabian, M., and Hargrove, M. S. (2010) Structure and reactivity of hexa-coordinate hemoglobins. Biophys. Chem. 152, 1-14
  39. Brunori, M., Giuffre `, A., Nienhaus, K., Nienhaus, G. U., Scandurra, F. M., and Vallone, B. (2005) Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes. Proc. Natl. Acad. Sci. U.S.A. 102, 8483-8488
  40. Dewilde, S., Kiger, L., Burmester, T., Hankeln, T., Baudin-Creuza, V., Aerts, T., Marden, M. C., Caubergs, R., and Moens, L. (2001) Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J. Biol. Chem. 276, 38949 -38955
  41. Lawson, D. M., Stevenson, C. E., Andrew, C. R., and Eady, R. R. (2000) Unprecedented proximal binding of nitric oxide to heme: implications for guanylate cyclase. EMBO J. 19, 5661-5671
  42. Antonyuk, S. V., Rustage, N., Petersen, C. A., Arnst, J. L., Heyes, D. J., Sharma, R., Berry, N. G., Scrutton, N. S., Eady, R. R., Andrew, C. R., and Hasnain, S. S. (2011) Carbon monoxide poisoning is prevented by the energy costs of conformational changes in gas-binding haemproteins. Proc. Natl. Acad. Sci. U.S.A. 108, 15780 -15785
  43. Andrew, C. R., Green, E. L., Lawson, D. M., and Eady, R. R. (2001) Reso- nance Raman studies of cytochrome cЈ support the binding of NO and CO to opposite sides of the heme: implications for ligand discrimination in heme-based sensors. Biochemistry 40, 4115-4122
  44. Garton, E. M., Pixton, D. A., Petersen, C. A., Eady, R. R., Hasnain, S. S., and Andrew, C. R. (2012) A distal pocket Leu residue inhibits the binding of O 2 and NO at the distal heme site of cytochrome cЈ. J Am Chem. Soc. 134, 1461-1463