Reducing bias in curve estimation by use of weights
1999, Computational Statistics & Data Analysis
https://doi.org/10.1016/S0167-9473(98)00081-4Abstract
A technique is suggested for reducing the order of bias of kernel estimators by weighting the contributions that di erent data values make to the estimator. The method is developed initially in the context of density estimation, where, unlike the "variable kernel" method proposed by Abramson, our approach does not involve using di erent bandwidths at di erent data values. Rather, it is a weighted-bootstrap version of the standard uniform-bootstrap method that is used to construct traditional kernel density estimators. The reduction in bias is achieved by biasing the bootstrap appropriately, in a global rather than local way. Our technique has a variety of di erent forms, each of which reduces the order of bias from the square to the fourth power of bandwidth, but does not alter the order of variance. It has immediate application to nonparametric regression, where it allows bias to be reduced without prejudicing the one sign of an estimator.
References (35)
- Abramson, I.S., 1982. On bandwidth variation in kernel estimates -a square root. law. Ann. Statist. 10, 1217-1223.
- Abramson, I.S., 1984. Adaptive density attening -a metric distortion principle for combating bias in nearest neighbour methods. Ann. Statist. 12, 880-886.
- Bowman, A.W., 1984. An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71, 353-360.
- Breiman, L., Meisel, W., Purcell, E., 1977. Variable kernel estimates of multivariate densities. Technometrics 19, 135-144.
- Fletcher, R., 1987. Practical Methods of Optimization, 2nd ed. Wiley, Chichester.
- Goldfarb, D., Idnani, A., 1982. Dual and primal-dual methods for solving strictly convex quadratic programs. In: Hennart, J.P. (Ed.), Numerical Analysis, Pro., Cocoyoc, Mexico, Lecture Notes in Mathematics, vol. 909. Springer, Berlin, 1981, pp. 226-239.
- Goldfarb, D., Idnani, A., 1983. A numerically stable dual method for solving strictly convex quadratic programs. Math. Program. 27, 1-33.
- Hall, P., 1990. On the bias of variable bandwidth curve estimators. Biometrika 529-535.
- Hall, P., Marron, J.S., 1988. Variable window width kernel estimates of probability densities. Probab. Theory Related Fields 80, 37-49. Correction 91, 34.
- Hall, P., Presnell, B., 1999. Intentionally biased bootstrap methods. J. Roy. Statist. Soc. Ser. B, 143-158.
- Hall, P., Presnell, B., Turlach, B.A., 1998. Reducing bias without prejudicing sign. Ann. Inst. Statist. Math., under revision.
- Jones, M.C., 1990. Variable kernel density estimates and variable kernel density estimates. Aust. J. Statist. 32, 361-371.
- Jones, M.C., Linton, O., Nielsen, J.P., 1995. A simple bias reduction method for density estimation. Biometrika 82, 327-338.
- Jones, M.C., McKay, I.J., Hu, T.-C., 1994. Variable location and scale kernel density estimation. Ann. Inst. Statist. Math. 46, 521-535.
- Jones, M.C., Signorini, D.F., 1997. A comparison of higher-order bias kernel density estimators. J. Amer. Statist. Assoc. 92, 1063-1073.
- Kim, D., Terrell, G.R., 1997. Least squares mixture decomposition estimation. Manuscript.
- Marron, J.S., Wand, M.P., 1992. Exact mean integrated squared errors. Ann. Statist. 20, 712-736.
- McKay, I., 1993. A note on bias reduction in variable-kernel density estimates. Can. J. Statist. 21, 367-375.
- Priebe, C.E., 1994. Adaptive mixtures. J. Amer. Statist. Assoc. 89, 796-806.
- Priebe, C.E., Marchette, D.M., 1991. Adaptive mixtures: recursive nonparametric pattern recognition. Pattern Recognition 24, 1197-1209.
- Priebe, C.E., Marchette, D.M., 1993. Adaptive mixture density estimation. Pattern Recognition 26, 771-785.
- Rudemo, M., 1982. Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9, 65-78.
- Ruppert, D., Cline, B.H., 1994. Bias reduction in kernel density estimation by smoothed empirical transformations. Ann. Statist. 22, 185-210.
- Samiuddin, M., el-Sayyad, G.M., 1990. On nonparametric kernel density estimates. Biometrika 77, 865-874.
- Scott, D.W., 1976. Nonparametric probability density estimation by optimization theoretic techniques. Tech. Report No. 476-131-1, Rice University, Houston.
- Scott, D.W., 1992. Multivariate Density Estimation -Theory, Practice and Visualization. Wiley, New York.
- Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, London, UK.
- Simono , J.S., 1996. Smoothing Methods in Statistics. Springer, New York.
- Solka, J.L., Poston, W.L., Wegman, E.J., 1995. A visualization technique for studying the iterative estimation of mixture densities. J. Comput. Graph. Statist. 4, 180-198.
- Solka, J.L., Poston, W.L., Wegman, E.J., Wallet, B.C., 1996a. A new iterative adaptive mixtures type estimator. In: Billard, L., Fisher, N.I. (Eds.), Comput. Sci. Statist: Graph-Image-Vision, Proc. 28th Symp. Interface, Interface Foundat., North America, Fairfax Station, pp. 573-578.
- Solka, J.L., Wegman, E.J., Poston, W.L., 1996b. A new order independent adaptive mixtures type estimator. ASA Proc. Statist. Comput. Sect., American Statistical Association, Alexandria, pp. 67-72.
- Terrell, G.R., 1990. Linear density estimates. ASA Proc. Statist. Comput. Sect., American Statistical Association, Alexandria, pp. 297-302.
- Terrell, G.R., 1993. Spline density estimators. ASA Proc. Statist. Comput. Sect., American Statistical Association, Alexandria, pp. 255-260.
- Terrell, G.R., Scott, D.W., 1992. Variable kernel density estimation. Ann. Statist. 20, 1236-1265.
- Wand, M.P., Jones, M.C., 1995. Kernel Smoothing. Chapman & Hall/CRC, London, UK.