Academia.eduAcademia.edu

Outline

Semiparametric deconvolution with unknown error variance

2011, Journal of Productivity Analysis

https://doi.org/10.1007/S11123-010-0193-Z

Abstract

Deconvolution is a useful statistical technique for recovering an unknown density in the presence of measurement error. Typically, the method hinges on stringent assumptions about the nature of the measurement error, more specifically, that the distribution is entirely known. We relax this assumption in the context of a regression error component model and develop an estimator for the unknown density. We show semi-uniform consistency of the estimator and provide Monte Carlo evidence that demonstrates the merits of the method.

References (38)

  1. Aigner, D., C. K. Lovell, and P. Schmidt (1977) Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 6, 21-37.
  2. Benkard, C. L. and P. Bajari (2005) Hedonic Price indices with unobserved product characteristics, and application to personal computers. Journal of Business & Economic Statistics 23, 61-75.
  3. Barry, J. and P. Diggle (1995) Choosing the smoothing parameter in a Fourier approach to nonparametric deconvolution of a density estimate. Journal of Nonparametric Statistics 4, 223-232.
  4. Carroll, R. J. and P. Hall (1988) Optimal rates of convergence for deconvolving a density. Journal of the American Statistical Association 83, 1184-1186.
  5. Delaigle A. and I. Gijbels (2002) Estimation of integrated squared density derivatives from a contaminated sample. Journal of the Royal Statistical Society, Series B 64, 869-886.
  6. Delaigle A. and I. Gijbels (2004a) Practical bandwidth selection in deconvolution density estimation. Computational Statistics & Data Analysis 45, 249-267.
  7. Delaigle A. and I. Gijbels (2004b) Bootstrap bandwidth selection in kernel density estima- tion from a contaminated sample. The Annals of the Institute of Statistical Mathematics 56, 19-47.
  8. Delaigle A. and I. Gijbels (2006a) Estimation of boundary and discontinuity points in deconvolution problems. Statistica Sinica 16, 773-788.
  9. Delaigle A. and I. Gijbels (2006b) Data-driven boundary estimation in deconvolution problems. Computational Statistics & Data Analysis 50, 1965-1994.
  10. Delaigle A. and A. Meister (2007) Nonparametric Regression estimation in the het- eroscedastic errors-in-variables problem. Journal of the American Statistical Association 102, 1416-1426.
  11. Devroye, P. L. (1989) Consistent deconvolution in denstiy estimation. Canadian Journal of Statistics 17, 235-239.
  12. Fan, J. (1991a) On the optimal rates of convergence for nonparametric deconvolution problems. The Annals of Statistics 19, 1257-1272.
  13. Fan, J. (1991b) Global behavior of deconvolution kernel estimates. Statistica Sinica 1, 541-551.
  14. Fan, J. (1991c) Asymptotic normality for deconvolution kernel estimators. Sankhȳa, Series A 53, 97-100.
  15. Fan, J. (1992) Deconvolution with supersmooth distributions. Canadian Journal of Statis- tics 20, 155-169.
  16. Fan, J. (1993) Adaptively local one-dimensional subproblems with application to a de- convolution problem. The Annals of Statistics 21, 600-610.
  17. Hall, P. and L. Simar (2002) Estimating a changepoint, boundary, or frontier in the presence of observation error. Journal of the American Statistical Association 97, 523- 534.
  18. Hesse, C. H. (1995) Deconvolving a density from contaminated dependent observations. The Annals of the Institute of Statistical Mathematics 47, 645-663.
  19. Hesse, C. H. (1996) How many "good" observations do you need for "fast" density de- convolution from supersmooth errors. Sankhȳa, Series A 58, 491-506.
  20. Hesse, C. H. (1999) Data-driven deconvolution. Journal of Nonparametric Statistics 10, 343-373.
  21. Horowitz, J.L. and M. Markatou (1996) Semiparametric estimation of regression models for panel data. Review of Economic Studies 63, 145-168.
  22. Krasnokutskaya, E., 2004. Identification and estimation in highway procurement auctions under unobserved auction heterogeneity. Working Paper, University of Pennsylvania.
  23. Li, T., Perrigne, I., Vuong, Q., (2000) Conditionally independent private information in OCS wildcat auctions. Journal of Econometrics 98, 129-161.
  24. Liu, M. C. and R. L. Taylor (1989) A consistent nonparametric density estimator for the deconvolution problem. Canadian Journal of Statistics 17, 427-438.
  25. Meister, A. (2003) Robustheitseigenschaften von Dekonvolutionsdichteschätzern bezüglich Missspezifikation der Fehlerdichte. Dissertation, University of Stuttgart, Germany.
  26. Meister, A. (2004a) Deconvolution density estimation with a testing procedure for the error distribution. Technical report, University of Stuttgart, Germany.
  27. Meister, A. (2004b) On the effect of misspecifying the error density in a nonparametric deconvolution problem. Canadian Journal of Statistics 32, 439-449.
  28. Meister, A. (2006) Density Estimation with Normal Measurement Error with Unknown Variance. Statistica Sinica 16, pp. 195-211.
  29. Mendelsohn, J. and J. Rice (1982) Deconvolution of microfluorometric histograms with B splines. Journal of the American Statistical Association 77, 748-753.
  30. Neumann, M. H. (1997) On the effect of estimating the error density in nonparametric deconvolution. Nonparametric Statistics 7, 307-330.
  31. Lukacs, E. (1968) Stochastic Convergence. Ratheon Education Company.
  32. Rebitzer (1987) Unemployment, long-term employment relations, and productivity growth. The Review of Economic and Statistics 69, 627-635.
  33. Postel-Vinay, F. and J.-M. Robin (2002) Equilibrium wage dispersion with heterogeneous workers and firms. Econometrica 70, 2295-2350.
  34. Postel-Vinay, F. and J.-M. Robin (2003) The distribution of earnings in an equilibrium search model with state-dependent offers and counter-offers. International Economic Re- view 43, 989-1016.
  35. Parzen, E. (1962) On Estimation of a Probability Density Function and Mode, Annals of Mathematical Statistics 35, 1065-1076.
  36. Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman Hall, London.
  37. Stefanski, L and R.J. Carroll (1990) Deconvoluting kernel density estimators. Statistics 21, 169-184.
  38. Zhang S. and R. J. Karunramuni (2000) Boundary bias correction for nonparametric deconvolution. Annals of the Institute of Statistical Mathematics 52, 612-629.