Academia.eduAcademia.edu

Outline

Do stronger definitions of randomness exist?

2003, Theoretical Computer Science

https://doi.org/10.1016/S0304-3975(02)00040-3

Abstract

In this paper, we investigate reÿned deÿnition of random sequences. Classical deÿnitions (Martin-L of tests of randomness, uncompressibility, unpredictability, or stochasticness) make use of the notion of algorithm. We present alternative deÿnitions based on set theory and explain why they depend on the model of ZFC that is considered. We also present a possible generalization of the deÿnition when small inÿnite regularities are allowed. (B. Durand), kanovei@mccme.ru (V. Kanovei), uspen-sky@lpcs.math.msu.ru (V.A. Uspensky), ver@mech.math.msu.su (N. Vereshchagin).

References (12)

  1. H. Gaifman, M. Snir, Probabilities over rich languages, randomness and testing, J. Symbolic Logic 47 (1982) 495-548.
  2. T. Jech, Set Theory, Academic Press, New York, 1978.
  3. V. Kanovei, M. Reeken, Mathematics in a nonstandard world, Math. Japonica 45 (2) (1997) 369-408.
  4. A.H. Kruse, Some notions of random sequence and their set-theoretic foundations, Z. Math. L. Grundl. Math. 13 (1967) 299-322.
  5. K. Kunen, Set Theory, an Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
  6. M. van Lambalgen, Independence, randomness, and the axiom of choice, J. Symbolic Logic 57 (1992) 1274-1304.
  7. P. Martin-L of, The deÿnition of random sequences, Inform. and Control 9 (1966) 602-619.
  8. An.A. Muchnik, A.L. Semenov, V.A. Uspensky, Mathematical methaphysics of randomness, Theoret. Comput. Sci. 207 (1998) 263-317.
  9. R.M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 (1) (1970) 1-56.
  10. J. Stern, Regularity properties of deÿnable sets of reals, Ann. Pure Appl. Logic 29 (1985) 289-324.
  11. V.A. Uspensky, A.L. Semenov, Algorithms: Main Ideas and Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  12. V.A. Uspensky, A.L. Semenov, A.Kh. Shen, Can an individual sequence of zeros and ones be random? Russian Math. Surveys 45 (1) (1990) 121-189.