Academia.eduAcademia.edu

Outline

Texture optimization for example-based synthesis

2005, ACM Transactions on Graphics

https://doi.org/10.1145/1073204.1073263

Abstract

We present a novel technique for texture synthesis using optimization. We define a Markov Random Field (MRF)-based similarity metric for measuring the quality of synthesized texture with respect to a given input sample. This allows us to formulate the synthesis problem as minimization of an energy function, which is optimized using an Expectation Maximization (EM)-like algorithm. In contrast to most example-based techniques that do region-growing, ours is a joint optimization approach that progressively refines the entire texture. Additionally, our approach is ideally suited to allow for controllable synthesis of textures. Specifically, we demonstrate controllability by animating image textures using flow fields. We allow for general two-dimensional flow fields that may dynamically change over time. Applications of this technique include dynamic texturing of fluid animations and texture-based flow visualization.

References (31)

  1. ASHIKHMIN, M. 2001. Synthesizing natural textures. 2001 ACM Sympo- sium on Interactive 3D Graphics (March), 217-226.
  2. BHAT, K. S., SEITZ, S. M., HODGINS, J. K., AND KHOSLA, P. K. 2004. Flow-based video synthesis and editing. ACM Transactions on Graphics (SIGGRAPH 2004) 23, 3 (August).
  3. BREGLER, C., COVELL, M., AND SLANEY, M. 1997. Video rewrite: Driv- ing visual speech with audio. Proceedings of SIGGRAPH 97 (August), 353-360. ISBN 0-89791-896-7. Held in Los Angeles, California.
  4. COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003. Wang tiles for image and texture generation. ACM Transactions on Graphics, SIGGRAPH 2003 22, 3, 287-294.
  5. COLEMAN, D., HOLLAND, P., KADEN, N., KLEMA, V., AND PETERS, S. C. 1980. A system of subroutines for iteratively reweighted least squares computations. ACM Trans. Math. Softw. 6, 3, 327-336.
  6. DEBONET, J. S. 1997. Multiresolution sampling procedure for analysis and synthesis of texture images. Proceedings of ACM SIGGRAPH 97 (August), 361-368.
  7. DELLAERT, F., KWATRA, V., AND OH, S. M. 2005. Mixture trees for modeling and fast conditional sampling with applications in vision and graphics. In IEEE Computer Vision and Pattern Recognition.
  8. DORETTO, G., AND SOATTO, S. 2003. Editable dynamic textures. In IEEE Computer Vision and Pattern Recognition, II: 137-142.
  9. EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for texture synthesis and transfer. Proceedings of SIGGRAPH 2001, 341-346.
  10. EFROS, A., AND LEUNG, T. 1999. Texture synthesis by non-parametric sampling. In International Conference on Computer Vision, 1033-1038.
  11. ELKAN, C. 2003. Using the triangle inequality to accelerate k-means. In International Conference on Machine Learning.
  12. EZZAT, T., GEIGER, G., AND POGGIO, T. 2002. Trainable videorealis- tic speech animation. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques, ACM Press, 388-398.
  13. FREEMAN, W. T., JONES, T. R., AND PASZTOR, E. C. 2002. Example- based super-resolution. IEEE Comput. Graph. Appl. 22, 2, 56-65.
  14. HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-based texture analy- sis/synthesis. Proceedings of ACM SIGGRAPH 95 (August), 229-238.
  15. HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B., AND SALESIN, D. H. 2001. Image analogies. Proceedings of SIGGRAPH 2001 (August), 327-340. ISBN 1-58113-292-1.
  16. JOHNSON, S. C. 1967. Hierarchical clustering schemes. Psychometrika 2, 241-254.
  17. JOJIC, N., FREY, B., AND KANNAN, A. 2003. Epitomic analysis of ap- pearance and shape. In International Conference on Computer Vision.
  18. KWATRA, V., SCH ÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003. Graphcut textures: Image and video synthesis using graph cuts. ACM Transactions on Graphics, SIGGRAPH 2003 22, 3 (July), 277-286.
  19. LIANG, L., LIU, C., XU, Y.-Q., GUO, B., AND SHUM, H.-Y. 2001. Real- time texture synthesis by patch-based sampling. ACM Transactions on Graphics Vol. 20, No. 3 (July), 127-150.
  20. MCLACHLAN, G., AND KRISHNAN, T. 1997. The EM algorithm and extensions. Wiley series in probability and statistics. John Wiley & Sons.
  21. NEYRET, F. 2003. Advected textures. Symposium on Computer Anima- tion'03 (July).
  22. PAGET, R., AND LONGSTAFF, I. D. 1998. Texture synthesis via a non- causal nonparametric multiscale markov random field. IEEE Transac- tions on Image Processing 7, 6 (June), 925-931.
  23. P ÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing. ACM Transactions on Graphics, SIGGRAPH 2003 22, 3, 313-318.
  24. PORTILLA, J., AND SIMONCELLI, E. P. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision 40, 1 (October), 49-70.
  25. SCH ÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I. 2000. Video textures. Proceedings of ACM SIGGRAPH 2000 (July), 489-498.
  26. WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using tree- structured vector quantization. Proceedings of ACM SIGGRAPH 2000 (July), 479-488. ISBN 1-58113-208-5.
  27. WEI, L.-Y., AND LEVOY, M. 2002. Order-independent texture synthesis. Tech. Rep. TR-2002-01, Stanford University CS Department.
  28. WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2004. Space-time video completion. In CVPR 2004, 120-127.
  29. WU, Q., AND YU, Y. 2004. Feature matching and deformation for texture synthesis. ACM Transactions on Graphics (SIGGRAPH 2004) (August).
  30. ZHANG, J., ZHOU, K., VELHO, L., GUO, B., AND SHUM, H.-Y. 2003. Synthesis of progressively-variant textures on arbitrary surfaces. ACM Transactions on Graphics, SIGGRAPH 2003 22, 3, 295-302.
  31. ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2004. Vector field design on surfaces. Tech. Rep. 04-16, Georgia Institute of Technology.