Academia.eduAcademia.edu

Outline

Replica Cluster Variational Method

2010, Journal of Statistical Physics

https://doi.org/10.1007/S10955-010-9938-3

Abstract

We present a general formalism to make the Replica-Symmetric and Replica-Symmetry-Breaking ansatz in the context of Kikuchi's Cluster Variational Method (CVM). Using replicas and the message-passing formulation of CVM we obtain a variational expression of the replicated free energy of a system with quenched disorder, both averaged and on a single sample, and make the hierarchical ansatz using functionals of functions of fields to represent the messages. We obtain a set of integral equations for the message functionals. The main difference with the Bethe case is that the functionals appear in the equations in implicit form and are not positive definite, thus standard iterative population dynamic algorithms cannot be used to determine them. In the simplest cases the solution could be obtained iteratively using Fourier transforms.

References (56)

  1. M. Mézard and G. Parisi, Eur. Phys. J. B 20, 217 (2001).
  2. M. Mézard and G. Parisi, J. Stat. Phys 111, 1 (2003).
  3. M. Mézard and R. Zecchina, Phys. Rev. E 66, 056126 (2002).
  4. M. Mézard, G. Parisi and R. Zecchina, Science 297, 812 (2002).
  5. Y. Kabashima and D. Saad, Europhys. Lett. 44, 668-674 (1998).
  6. J.S. Yedidia, W.T. Freeman and Y. Weiss, Advances in Neural Information Processing Systems (NIPS) 13, 689 (2000).
  7. J.S. Yedidia, W.T. Freeman and Y. Weis, IEEE Transactions on Information Theory 51, 2282, (2005).
  8. R. Kikuchi, Phys. Rev. 81, 988 (1951). T. Morita, M. Suzuki, K. Wada and M. Kaburagi (eds.): Foundations and Applications of Cluster Variation Method and Path Probability Method, Prog. Theor. Phys. Suppl. 115 (1994).
  9. A.K. Hartmann and A.P. Young, Phys. Rev. B 64, 180404(R) (2001).
  10. T. Jörg, J. Lukic, E. Marinari and O.C. Martin, Phys. Rev. Lett. 96, 237205 (2006).
  11. H.G. Ballesteros et al., Phys. Rev. B 61, 3215 (2000).
  12. S. Katsura and S. Fujiki, J. Phys. C: Solid St. Phys., 13 (1980) 4711.
  13. S. Fujiki and S. Katsura, J. Phys. C: Solid St. Phys., 13 (1980) 4723.
  14. S. Katsura and I. Nagahara, J. Phys. C: Solid St. Phys., 13 (1980) 4995.
  15. M. Mézard, G. Parisi, and M.A. Virasoro, Spin glass theory and beyond, World Scientific (Singapore 1987).
  16. A. Crisanti, G. Paladin, H.-J. Sommers and A. Vulpiani, J. Phys. I France 2, 1325 (1992).
  17. G. Parisi and T. Rizzo, Phys. Rev. Lett. 101, 117205 (2008).
  18. A. Pelizzola, J. Phys. A 38, R309 (2005).
  19. Y. Goldschmidt and C. De Dominicis, Phys. Rev. B 41, 2186 (1989).
  20. R. Monasson, J. Phys. A 31, 513 (1998).
  21. G. Parisi and T. Rizzo, Large Deviations of the Free-Energy in Diluted Mean-Field Spin-Glass, J. Phys. A. in press.
  22. M. Ohzeki and H. Nishimori, preprint arXiv:0905.3623v1.
  23. R.G. Palmer and J. Adler, Int. J. Mod. Phys. C 10, 667 (1999).
  24. I.A. Campbell, A.K. Hartmann and H.G. Katzgraber, Phys. Rev. B 70, 054429 (2004).
  25. S. Boettcher, Phys. Rev. B 67, 060403 (2003);
  26. Eur. Phys. J. B 31, 29 (2003).
  27. J.A. Blackman, J.R. Goncalves and J. Poulter, Phys. Rev. E 58, 1502 (1998).
  28. J. Lukic, A. Galluccio, E. Marinari, O.C. Martin and G. Rinaldi, Phys. Rev. Lett. 92, 117202 (2004).
  29. A. Pelizzola, Phys. Rev. B 61, 11510 (2000)
  30. J. Poulter and J.A. Blackman, J. Phys. A 34, 7527 (2001).
  31. A. Aromsawa, Ph.D. Thesis, Mahidol University (2007).
  32. G. Parisi and T. Rizzo, Phys. Rev. B 79, 134205 (2009).
  33. T. Aspelmeier, A. Billoire, E. Marinari and M.A. Moore (2008) J. Phys. A: Math. Theor. 41 324008.
  34. J.-P. Bouchaud, F. Krzakala and O.C. Martin, Phys. Rev. B 68, 224404 (2003).
  35. J. Wehr and M. Aizenman, J. Stat. Phys. 60, 287 (1990).
  36. T. Temesvari, The Ising spin glass in finite dimensions: a perturbative study of the free energy, arXiv:0911.0362
  37. T. Aspelmeier and M.A. Moore, Phys. Rev. Lett. 90, 177201 (2003).
  38. J.-S. Wang and R. H. Swendsen, Phys. Rev. B 38, 4840 (1988).
  39. L. Saul and M. Kardar, Phys. Rev. E 48, R3221 (1993);
  40. Nucl. Phys. B 432, 641 (1994).
  41. J.-S. Wang, Phys. Rev. E 72, 036706 (2005).
  42. H.G. Katzgraber, L.W. Lee and I.A. Campbell, cond-mat/0510668 (2005).
  43. W. Atisattapong and J. Poulter, New J. Phys. 10, 093012 (2008).
  44. H.G. Katzgraber, L.W. Lee and I.A. Campbell, Phys. Rev. B 75, 014412 (2007).
  45. W. Atisattapong and J. Poulter, preprint arXiv:0901.1538 (2009).
  46. A. Pelizzola, M. Pretti, Phys. Rev. B 60, 10134 (1999).
  47. E. Marinari and F. Zuliani, J. Phys. A: Math. Gen. 32, 7447 (1999).
  48. L. Klein, J. Adler, A. Aharony, A.B. Harris and Y. Meir, Phys. Rev. B 43, 11249 (1991).
  49. D. Daboul, I. Chang and A. Aharony, Eur. Phys. J. B 41, 231 (2004).
  50. A. Georges, M. Mézard and J.S. Yedidia, Phys. Rev. Lett. 64, 2937 (1990).
  51. Y.Y. Goldschmidt and P.-Y.Lai, J. Phys. A 23, L775 (1990).
  52. G. Semerjian, J. Stat. Phys. 130, 251 (2008).
  53. Y. Kabashima, J. Phys. Soc. Jpn. 74, 2133 (2005).
  54. The original name was "Cluster Variation Method", but we believe "Cluster Variational Method" to be a better wording.
  55. We adopt the original notation of Ref. [6], which was changed in the more recent Ref. [7]. The ensembles M (r) \ M (s) and M (r, s) corresponds respectively to N (r, s) and M (r, s) defined in [7]. Note however that for us these are ensembles of couples of regions labels instead of ensembles of the corresponding messages as in [6].
  56. Actually one obtain a different set of equations that can be proved to be equivalent to eqs. (6) along the same lines of the proof that the two sets of constraints are equivalent, see theorem 5 in [7]