Academia.eduAcademia.edu

Outline

Wavelets in time-series analysis

1999, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

https://doi.org/10.1098/RSTA.1999.0445

Abstract

This article reviews the role of wavelets in statistical time series analysis. We survey work that emphasises scale such as estimation of variance and the scale exponent of a process with a speci c scale behaviour such as 1/f processes. We present some of our own work on locally stationary wavelet (lsw) processes which model both stationary and some kinds of non-stationary processes. Analysis of time series assuming the lsw model permits identi cation of an evolutionary wavelet spectrum (ews) that quanti es the variation in a time series over a particular scale and at a particular time. We address estimation of the ews and show how our methodology reveals phenomena of interest in an infant electrocardiogram series.

References (33)

  1. Abry, P. Flandrin, P., Taqqu, M. & Veitch, D. 1999 Wavelets for the analysis, estimation and synthesis of scaling data. in: Self Similar Network Tra c Analysis and Performance Evalua- tion. (eds. K. Park and W. Willinger). Wiley.
  2. Abry, P., Gon calv es, P. & Flandrin, P. 1995 Wavelets, spectrum analysis and 1/f processes. In Wavelets and Statistics (ed. A. Antoniadis & G. Oppenheim). Springer Lecture Notes in Statistics, no. 103, pp. 15{29.
  3. Allan, D.W. 1966 Statistics of atomic frequency clocks. Proceedings of the IEEE, 31, 221{230.
  4. Beran, J. 1994 Statistics for long-memory processes. London: Chapman and Hall.
  5. Coifman, R. R. & Donoho, D. L. 1994 Translation-invariant denoising. In Wavelets and Statistics (ed. A. Antoniadis & G. Oppenheim). Springer Lecture Notes in Statistics, no. 103, pp. 125{ 150.
  6. Dahlhaus, R. 1997 Fitting time series models to nonstationary processes. Ann. Statist. 25, 1{37.
  7. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. & Picard, D. 1995 Wavelet shrinkage: Asymptopia? (with discussion). J. Roy. Statist. Soc. B 57, 301{369.
  8. Farge, M. 1999 Intermittency and coherent votices in fully-developed turbulence. Phil. Trans. R. Soc. Lond. A 357 (to appear).
  9. Flandrin, P. 1998. Time{Frequency / Time{Scale Analysis (Wavelet Analysis and Its Applica- tions, Vol 10). Academic Press, San Diego, CA.
  10. Gao, H.-Ye 1997. Choice of thresholds for wavelet shrinkage estimate of the spectrum. J. Time Series Anal., 18, 231{251.
  11. Gon calv es, P. & Flandrin, P. 1993 Bilinear Time-Scale Analysis Applied to Local Scaling Ex- ponents Estimation. in: Progress in Wavelet Analysis and Applications (Y. Meyer and S. Roques, eds.), pp. 271{276, Editions Frontieres, Gif-sur-Yvette.
  12. Johnstone, I.M. 1999 Wavelets and the theory of nonparametric function estimation. Phil. Trans. R. Soc. Lond. A 357 (to appear).
  13. Ho mann, M. 1999. On nonparametric estimation in nonlinear AR(1)-models. Statistics and probability letters (to appear).
  14. McCoy, E.J. & Walden, A.T. 1996 Wavelet analysis and synthesis of stationary long-memory processes. Journal of Computational and Graphical Statistics, 5, 26{56.
  15. Nason, G.P., Sapatinas, T. & Sawczenko, A. 1999 Statistical modelling of time series using non-decimated wavelet representations. Preprint, University of Bristol.
  16. Nason, G. P. & Silverman, B. W. 1995 The stationary wavelet transform and some statisti- cal applications. In Wavelets and Statistics (ed. A. Antoniadis & G. Oppenheim). Springer Lecture Notes in Statistics, no. 103, pp. 281{300.
  17. Nason, G.P., von Sachs, R. & Kroisandt, G. 1998 Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. Discussion Paper 98/22, Institut de Statistique, UCL, Louvain-la-Neuve.
  18. Neumann, M. 1996. Spectral density estimation via nonlinear wavelet methods for stationary non-Gaussian time series. J. Time Ser. Anal., 17, 601{633.
  19. Neumann, M. & von Sachs, R. 1997. Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. Ann. Statist., 25, 38{76.
  20. Page, C.H. 1952 Instantaneous power spectra. J. Appl. Phys. , 23, 103{106.
  21. Percival, D.B. & Guttorp, P. 1994 Long-memory processes, the Allan variance and wavelets. In Wavelets in Geophysics (ed. E. Foufoula-Georgiou & P. Kumar), pp. 325{344, Academic Press.
  22. Priestley, M.B. 1965 Evolutionary spectra and non-stationary processes. J. Roy. Statist. Soc. B 27, 204{237.
  23. Priestley, M.B. 1981 Spectral Analysis and Time Series. London: Academic Press.
  24. Rioul, O. & Vetterli, M. 1991 Wavelets and signal processing. IEEE Sig. Proc. Mag., 8, 14{38.
  25. Serroukh, A., Walden, A.T. & Percival, D.B. 1998 Statistical properties of the wavelet variance estimator for non-Gaussian/non-linear time series. Statistics Section Technical Report, TR- 98-03. Department of Mathematics, Imperial College, London.
  26. von Sachs, R. & MacGibbon B. 1998 Nonparametric curve estimation by wavelet thresholding with locally stationary errors (submitted for publication).
  27. von Sachs, R. & Neumann, M. 1998 A wavelet-based test for stationarity (submitted for publi- cation).
  28. Sachs, R. & Schneider, K. 1996 Wavelet smoothing of evolutionary spectra by non-linear thresholding. Appl Comp. Harmonic Anal. , 3, 268{282.
  29. Silverman, B.W. 1999 Wavelets in statistics: beyond the standard assumptions. Phil. Trans. R. Soc. Lond. A 357 (to appear).
  30. Silverman, R.A. 1957 Locally stationary random processes. IRE Trans. Information Theory, IT-3, 182{187.
  31. Wang, Y., Cavanaugh, J. and Song, Ch. 1997 Self-similarity index estimation via wavelets for locally self-similar processes. Preprint, Dept. Stat., University of Missouri.
  32. Whitcher, B., Byers, S.D., Guttorp, P. & Percival, D.B. 1998 Testing for homogeneity of variance in time series: long memory, wavelets and the Nile river. Submitted for publication.
  33. Wornell, G.W. and Oppenheim, A.V. 1992 Estimation of fractal signals from noisy measurements using wavelets. IEEE Transactions on signal processing, 40, 611{623.