Academia.eduAcademia.edu

Outline

Spatio-temporal prediction and inference by V1 neurons

2007, European Journal of Neuroscience

https://doi.org/10.1111/J.1460-9568.2007.05712.X

Abstract

In normal vision, visual scenes are predictable, as they are both spatially and temporally redundant. Evidence suggests that the visual system may use the spatio-temporal regularities of the external world, available in the retinal signal, to extract information from the visual environment and better reconstruct current and future stimuli. We studied this by recording neuronal responses of primary visual cortex (area V1) in anaesthetized and paralysed macaques during the presentation of dynamic sequences of bars, in which spatio-temporal regularities and local information were independently manipulated. Most V1 neurons were significantly modulated by events prior to and distant from stimulation of their classical receptive fields (CRFs); many were more strongly tuned to prior and distant events than they were to CRFs bars; and several showed tuning to prior information without any CRF stimulation. Hence, V1 neurons do not simply analyse local contours, but impute local features to the visual world, on the basis of prior knowledge of a visual world in which useful information can be distributed widely in space and time.

References (49)

  1. Albright, T.D. & Stoner, G.R. (2002) Contextual influences on visual processing. Annu. Rev. Neurosci., 25, 339-379.
  2. Angelucci, A., Levitt, J.B., Walton, E.J., Hupe, J.M., Bullier, J. & Lund, J.S. (2002) Circuits for local and global signal integration in primary visual cortex. J. Neurosci., 22, 8633-8646.
  3. Baddeley, R., Abbott, L.F., Booth, M.C., Sengpiel, F., Freeman, T., Wakeman, E.A. & Rolls, E.T. (1997) Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc. Biol. Sci., 264, 1775-1783.
  4. Berry, M.J., 2nd, Brivanlou, I.H., Jordan, T.A. & Meister, M. (1999) Anticipation of moving stimuli by the retina. Nature, 398, 334-338.
  5. Borst, A. & Theunissen, F.E. (1999) Information theory and neural coding. Nature Neurosci., 2, 947-957.
  6. Cavanaugh, J.R., Bair, W. & Movshon, J.A. (2002) Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. J. Neurophysiol., 88, 2530-2546.
  7. Chisum, H.J. & Fitzpatrick, D. (2004) The contribution of vertical and horizontal connections to the receptive field center and surround in V1. Neural Networks, 17, 681-693.
  8. Das, A. & Gilbert, C.D. (1995) Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature, 375, 780-784.
  9. Dragoi, V., Sharma, J. & Sur, M. (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron, 28, 287-298.
  10. Duhamel, J.-R., Colby, C.L. & Goldberg, M.E. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90-92.
  11. Felleman, D.J. & Van Essen, D.C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex, 1, 1-47.
  12. Friston, K. (2002) Functional integration and inference in the brain. Prog. Neurobiol., 68, 113-143.
  13. Grosof, D.H., Shapley, R.M. & Hawken, M.J. (1993) Macaque V1 neurons can signal 'illusory' contours. Nature, 365, 550-552.
  14. Guo, K., Benson, P.J. & Blakemore, C. (2004a) Pattern motion is present in V1 of awake but not anaesthetized monkeys. Eur. J. Neurosci., 19, 1055-1066.
  15. Guo, K., Nevado, A., Robertson, R.G., Pulgarin, M., Thiele, A. & Young, M.P. (2004b) Effects on orientation perception of manipulating the spatio- temporal prior probability of stimuli. Vis. Res., 44, 2349-2358.
  16. Guo, K., Robertson, R.G., Mahmoodi, S. & Young, M.P. (2005) Centre- surround interactions in response to natural scene stimulation in the primary visual cortex. Eur. J. Neurosci., 21, 536-548.
  17. Heeger, D.J. (1992) Normalization of cell responses in cat striate cortex. Vis. Neurosci., 9, 181-197.
  18. Heller, J., Hertz, J.A., Kjaer, T.W. & Richmond, B.J. (1995) Information flow and temporal coding in primate pattern vision. J. Comp. Neurosci., 2, 175- 193.
  19. Huang, X., Albright, T.D. & Stoner, G. (2007) Adaptive surround modulation in cortical area MT. Neuron, 53, 761-770.
  20. Jones, H.E., Wang, W. & Sillito, A.M. (2002) Spatial organization and magnitude of orientation contrast interactions in primate v1. J. Neurophys- iol., 88, 2796-2808.
  21. Kapadia, M.K., Westheimer, G. & Gilbert, C.D. (1999) Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc. Natl Acad. Sci. USA, 96, 12073-12078.
  22. Kapadia, M.K., Westheimer, G. & Gilbert, C.D. (2000) Spatial distribution of contextual interactions in primary visual cortex and in visual perception. J. Neurophysiol., 84, 2048-2062.
  23. Knierim, J.J. & van Essen, D.C. (1992) Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol., 67, 961- 980.
  24. Knill, D.C. & Richards, W. (1996) Perception as Bayesian Inference. Cambridge University Press, New York.
  25. Komatsu, H., Kinoshita, M. & Murakami, I. (2000) Neural responses in the retinotopic representation of the blind spot in the macaque V1 to stimuli for perceptual filling-in. J. Neurosci., 20, 9310-9319.
  26. Lennie, P. (1998) Single units and visual cortical organization. Perception, 27, 889-935.
  27. Levitt, J.B. & Lund, J.S. (1997) Contrast dependence of contextual effects in primate visual cortex. Nature, 387, 73-76.
  28. Li, W., Piech, V. & Gilbert, C.D. (2006) Contour saliency in primary visual cortex. Neuron, 50, 951-962.
  29. Livingston, M.S. & Hubel, D.H. (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neuro- sci., 7, 3416-3468.
  30. Muller, J.R., Metha, A.B., Krauskopf, J. & Lennie, P. (1999) Rapid adaptation in visual cortex to the structure of images. Science, 285, 1405-1408.
  31. Nelson, J.I. & Frost, B.J. (1978) Orientation selective inhibition from beyond the classic visual receptive field. Brain Res., 139, 359-365.
  32. Panzeri, S. & Treves, A. (1996) Analytical estimates of limited sampling in different information measures. Network, 7, 87-107.
  33. Pettet, M.W. & Gilbert, C.D. (1992) Dynamic changes in receptive-field size in cat primary visual cortex. Proc. Natl Acad. Sci. USA, 89, 8366-8370.
  34. Pola, G., Thiele, A., Hoffmann, K.P. & Panzeri, S. (2003) An exact method to quantify the information transmitted by different mechanisms of correlational coding. Network, 14, 35-60.
  35. Reich, D.S., Mechler, F., Purpura, K.P. & Victor, J.D. (2000) Interspike intervals, receptive fields, and information encoding in primary visual cortex. J. Neurosci., 20, 1964-1974.
  36. Reich, D.S., Mechler, F. & Victor, J.D. (2001) Formal and attribute-specific information in primary visual cortex. J. Neurophysiol., 85, 305-318.
  37. Sceniak, M.P., Ringach, D.L., Hawken, M.J. & Shapley, R. (1999) Contrast's effect on spatial summation by macaque V1 neurons. Nature Neurosci., 2, 733-739.
  38. Shannon, C. (1948) A mathematical theory of communication. Bell. Sys. Tech. J., 27, 379-423.
  39. Sharma, J., Dragoi, V., Tenenbaum, J.B., Miller, E.K. & Sur, M. (2003) V1 neurons signal acquisition of an internal representation of stimulus location. Science, 300, 1758-1763.
  40. Sugita, Y. (1999) Grouping of image fragments in primary visual cortex. Nature, 401, 269-272.
  41. Super, H., Spekreijse, H. & Lamme, V.A. (2003) Figure-ground activity in primary visual cortex (V1) of the monkey matches the speed of behavioral response. Neurosci. Lett., 344, 75-78.
  42. Thiele, A. (2007) Reconstructing the world: Switching from segmentation to integration allows neurons in area MT to make 'sense' of the visual scene. Neuron, 53, 623-625.
  43. Thiele, A. & Hoffmann, K.P. (1996) Neuronal activity in MST and STPp, but not MT changes systematically with stimulus-independent decisions. Neuroreport, 7, 971-976.
  44. Vinje, W.E. & Gallant, J.L. (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 287, 1273-1276.
  45. Wilson, H.R. & Humanski, R. (1993) Spatial frequency adaptation and contrast gain control. Vis. Res., 33, 1133-1149.
  46. Yao, H. & Dan, Y. (2001) Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron, 32, 315-323.
  47. Young, M.P. (2000) The architecture of visual cortex and inferential processes in vision. Spat. Vis., 13, 137-146.
  48. Young, M.P., Hilgetag, C.-C. & Scannell, J.W. (2000) On imputing function to structure from the behavioral effects of brain lesions. Philostransrsocl- ond[Biol.], 355, 147-161.
  49. Zipser, K., Lamme, V.A.F. & Schiller, P.H. (1996) Contextual modulation in primary visual cortex. J. Neurosci., 16, 7376-7389.