Academia.eduAcademia.edu

Outline

Contextual modal type theory

2008, ACM Transactions on Computational Logic

https://doi.org/10.1145/1352582.1352591

Abstract

The intuitionistic modal logic of necessity is based on the judgmental notion of categorical truth. In this paper we investigate the consequences of relativizing these concepts to explicitly specified contexts. We obtain contextual modal logic and its type-theoretic analogue. Contextual modal type theory provides an elegant, uniform foundation for understanding meta-variables and explicit substitutions. We sketch some applications in functional programming and logical frameworks.

References (64)

  1. Abadi, M., Cardelli, L., Curien, P.-L., and Lèvy, J.-J. 1990. Explicit substitutions. In Sym- posium on Principles of Programming Languages, POPL'90. ACM, San Francisco, California, 31-46.
  2. Alechina, N., Mendler, M., de Paiva, V., and Ritter, E. 2001. Categorical and Kripke semantics for Constructive S4 modal logic. In International Workshop on Computer Science Logic, CSL'01, L. Fribourg, Ed. Lecture Notes in Computer Science, vol. 2142. Springer, Paris, France, 292-307.
  3. Attardi, G. and Simi, M. 1994. Proofs in context. In Principles of Knowledge Representation and Reasoning, J. Doyle, E. Sandewall, and P. Torasso, Eds. 16-26.
  4. Attardi, G. and Simi, M. 1995. A formalization of viewpoints. Fundamenta Informaticae 23, 3, 149-173.
  5. Bjørner, N. and Muñoz, C. 2000. Absolute explicit unification. In International Conference on Rewriting Techniques and Applications, RTA'00. LNCS, vol. 1833. Norwich, UK, 31-46.
  6. Bognar, M. and de Vrijer, R. 2001. A calculus of lambda calculus context. Journal of Auto- mated Reasoning 27, 1, 29-59.
  7. Buvač, S. 1996. Quantificational logic of context. In Proceedings of the Thirteenth National Conference on Artificial Intelligence. 600-606.
  8. Buvač, S., Buvač, V., and Mason, I. 1995. Metamathematics of contexts. Fundamenta Infor- maticae 23, 3, 412-419.
  9. Calcagno, C., Moggi, E., and Taha, W. 2004. ML-like inference for classifiers. In Euro- pean Symposium on Programming, ESOP'04, D. Schmidt, Ed. Springer-Verlag LNCS 2986, Barcelona, Spain, 79-93.
  10. Cartmell, J. 1986. Generalized algebraic theories and contextual categories. Annals of Pure and Applied Logic 32, 209-243.
  11. Cervesato, I. and Pfenning, F. 2002. A linear logical framework. Information & Computa- tion 179, 1 (Nov.), 19-75.
  12. Dami, L. 1998. A lambda-calculus for dynamic binding. Theoretical Computer Science 192, 2, 201-231.
  13. Davies, R. 1996. A temporal logic approach to binding-time analysis. In Symposium on Logic in Computer Science, LICS'96, E. Clarke, Ed. IEEE Computer Society Press, New Brunswick, New Jersey, 184-195.
  14. Davies, R. and Pfenning, F. 2001. A modal analysis of staged computation. Journal of the ACM 48, 3 (May), 555-604.
  15. de Groote, P. 2002. On the strong normalisation of intuitionistic natural deduction with permutation-conversions. Information and Computation 178, 2 (Nov.), 441-464.
  16. de Paiva, V. 2003. Natural deduction and context as (constructive) modality. In Modelling and Using Context, P. Blackburn, C. Ghidini, R. M. Turner, and F. Giunchiglia, Eds. Lecture Notes in Artificial Inteligence, vol. 2680. Springer, 116-129.
  17. Dowek, G., Hardin, T., and Kirchner, C. 1995. Higher-order unification via explicit substitu- tions. In Symposium on Logic in Computer Science, LICS'95, D. Kozen, Ed. IEEE Computer Society Press, San Diego, California, 366-374.
  18. Dowek, G., Hardin, T., Kirchner, C., and Pfenning, F. 1996. Unification via explicit substi- tutions: The case of higher-order patterns. In Proceedings of the Joint International Conference and Symposium on Logic Programming, M. Maher, Ed. MIT Press, Bonn, Germany, 259-273.
  19. Geuvers, H. and Jojgov, G. I. 2002. Open proofs and open terms: a basis for interactive logic. In International Workshop on Computer Science Logic, CSL'02, J. C. Bradfield, Ed. Lecture Notes in Computer Science (LNCS 2471). Springer, Edinburgh, Scotland, 537-552.
  20. Giunchiglia, F. 1993. Contextual reasoning. Epistemologica 16, 345-364.
  21. Giunchiglia, F. and Serafini, L. 1994. Multilanguage hierarchical logics, or: How to do without modal logics. Artificial Intelligence 65, 1, 29-70.
  22. Harper, R., Honsell, F., and Plotkin, G. 1993. A framework for defining logics. Journal of the Association for Computing Machinery 40, 1 (January), 143-184.
  23. Hashimoto, M. and Ohori, A. 2001. A typed context calculus. Theoretical Computer Sci- ence 266, 1-2, 249-272.
  24. Hodas, J. and Miller, D. 1994. Logic programming in a fragment of intuitionistic linear logic. Information and Computation 110, 2, 327-365.
  25. Jojgov, G. I. 2003. Holes with binding power. In Types for Proofs and Programs, Second International Workshop, TYPES 2002, Berg en Dal, The Netherlands, April 24-28, 2002, Selected Papers, H. Geuvers and F. Wiedijk, Eds. Lecture Notes in Computer Science (LNCS 2646). Springer, 162-181.
  26. Kripke, S. 1959. A completeness theorem in modal logic. Journal of Symbolic Logic 24, 1-14.
  27. Lee, S.-D. and Friedman, D. P. 1996. Enriching the lambda calculus with contexts: toward a theory of incremental program construction. In International Conference on Functional Programming, ICFP'96. 239-250.
  28. Liang, C. and Nadathur, G. 2002. Tradeoffs in the intensional representation of lambda terms. In International Conference on Rewriting Techniques and Applications, RTA'02, S. Tison, Ed. Springer-Verlag LNCS 2378, Copenhagen, Denmark, 192-206.
  29. Magnusson, L. 1995. The implementation of ALF -a proof editor based on Martin-Löf's monomorphic type theory with explicit substitutions. Ph.D. thesis, Chalmers University of Technology and Göteborg University.
  30. Martin-Löf, P. 1996. On the meanings of the logical constants and the justifications of the logical laws. Nordic Journal of Philosophical Logic 1, 1, 11-60.
  31. Mason, I. A. 1999. Computing with contexts. Higher-Order and Symbolic Computation 12, 2, 171-201.
  32. McCarthy, J. 1987. Generality in artificial intelligence. Communications of the ACM 30, 12, 1030-1035.
  33. McCarthy, J. 1993. Notes on formalizing contexts. In International Joint Conference on Arti- ficial Intelligence. Chambery, France, 555-560.
  34. Miller, D. 1991. A logic programming language with lambda-abstraction, function variables, and simple unification. Journal of Logic and Computation 1, 4, 497-536.
  35. Montague, R. 1963. Syntactical treatment of modalities, with corollaries on reflexion principles and finite axiomatizability. Acta Philosophica Fennica 16, 153-167.
  36. Moody, J. 2003. Modal logic as a basis for distributed computation. Tech. Rep. CMU-CS-03-194, Carnegie Mellon University. Oct.
  37. Muñoz, C. 2001. Dependent types and explicit substitutions. Mathematical Structures in Com- puter Science 11, 1 (February), 91-129.
  38. Murphy VII, T., Crary, K., Harper, R., and Pfenning, F. 2004. A symmetric modal lambda calculus for distributed computing. In Symposium on Logic in Computer Science, LICS'04, H. Ganzinger, Ed. Turku, Finland, 286-295.
  39. Nanevski, A. 2003. From dynamic binding to state via modal possibility. In International Con- ference on Principles and Practice of Declarative Programming, PPDP'03. Uppsala, Sweden, 207-218.
  40. Nanevski, A. 2004. Functional programming with names and necessity. Ph.D. thesis, Computer Science Department, Carnegie Mellon University.
  41. Nanevski, A. and Pfenning, F. 2005. Staged computation with names and necessity. Journal of Functional Programming 15, 6 (Nov.), 837-891.
  42. Nanevski, A., Pientka, B., and Pfenning, F. 2003. A modal foundation for meta variables. In Proceedings of MERλIN 2003. Uppsala, Sweden.
  43. Pfenning, F. 2000. Structural cut elimination I. Intuitionistic and classical logic. Information and Computation 157, 1/2 (Mar.), 84-141.
  44. Pfenning, F. 2001. Intensionality, extensionality, and proof irrelevance in modal type theory. In Symposium on Logic in Computer Science, LICS'01, J. Halpern, Ed. IEEE Computer Society Press, Boston, Massachusetts, 221-230.
  45. Pfenning, F. and Davies, R. 2001. A judgmental reconstruction of modal logic. Mathematical Structures in Computer Science 11, 4, 511-540.
  46. Pfenning, F. and Schürmann, C. 1999. System description: Twelf -a meta-logical frame- work for deductive systems. In International Conference on Automated Deduction, CADE'99, H. Ganzinger, Ed. Lecture Notes in Artificial Inteligence, vol. 1632. Springer-Verlag, Trento, Italy, 202-206.
  47. Pientka, B. 2003. Tabled higher-order logic programming. Ph.D. thesis, Computer Science Department, Carnegie Mellon University.
  48. Pientka, B. and Pfennning, F. 2003. Optimizing higher-order pattern unification. In Inter- national Conference on Automated Deduction, CADE'03, F. Baader, Ed. Lecture Notes in Computer Science (LNAI 2741). Springer, Miami, Florida, 473-487.
  49. Sato, M., Sakurai, T., and Burstall, R. 2001. Explicit environments. Fundamenta Informat- icae 45, 1-2, 79-115.
  50. Sato, M., Sakurai, T., and Kameyama, Y. 2002. A simply typed context calculus with first-class environments. Journal of Functional and Logic Programming 2002, 4 (March).
  51. Sato, M., Sakurai, T., Kameyama, Y., and Igarashi, A. 2003. Calculi of meta-variables. In International Workshop on Computer Science Logic, CSL'03, M. Baaz and J. A. Makowsky, Eds. Lecture Notes in Computer Science (LNCS 2803). Springer, Vienna, Austria, 484-497.
  52. Schürmann, C., Poswolsky, A., and Sarnat, J. 2005. The ∇-calculus: Functional programming with higher-order encodings. In International Conference on Typed Lambda Calculus and Applications, TLCA'05, P. Urzyczyn, Ed. Springer-Verlag LNCS 3461, Nara, Japan, 339-353.
  53. Serafini, L. and Bouquet, P. 2004. Comparing formal theories of context in AI. Artificial Intelligence 155, 1-2, 41-67.
  54. Serafini, L. and Giunchiglia, F. 2002. ML system: A proof theory for contexts. Journal of Logic, Language and Information 11, 4, 471-518.
  55. Simpson, A. K. 1994. The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis, University of Edinburgh.
  56. Strecker, M. 1999. Construction and deduction in type theories. Ph.D. thesis, Universität Ulm.
  57. Taha, W. and Nielsen, M. F. 2003. Environment classifiers. In Symposium on Principles of Programming Languages, POPL'03, G. Morrisett, Ed. ACM Press, New Orleans, Louisiana, 26-37.
  58. Taha, W. and Sheard, T. 1997. Multi-stage programming with explicit annotations. In Work- shop on Partial Evaluation and Semantics-Based Program Manipulation, PEPM'97. Amster- dam, 203-217.
  59. Thomason, R. H. 1999. Type theoretic foundations for context, part 1: Contexts as complex type-theoretic objects. In Proceedings of the Second International and Interdisciplinary Con- ference on Modeling and Using Contexts, CONTEXT'99, P. Bouquet, L. Serafini, P. Brézillon, M. Benerecetti, and F. Castellani, Eds. Trento, Italy, 352-374.
  60. Thomason, R. H. 2003. Dynamic contextual intensional logic: Logical foundations and an application. In Modeling and Using Context, P. Blackburn, C. Ghidini, R. M. Turner, and F. Giunchiglia, Eds. Lecture Notes in Artificial Inteligence, vol. 2680. Springer, 328-341.
  61. Watkins, K., Cervesato, I., Pfenning, F., and Walker, D. 2002. A concurrent logical frame- work I: Judgments and properties. Tech. Rep. CMU-CS-02-101, Department of Computer Science, Carnegie Mellon University. Revised May 2003.
  62. Weyhrauch, R. W. 1979. Prolegomena to a theory of mechanized formal reasoning. Artificial Intelligence 13, 1-2, 133-170.
  63. Wickline, P., Lee, P., and Pfenning, F. 1998. Run-time code generation and Modal-ML. In Conference on Programming Language Design and Implementation, PLDI'98, K. D. Cooper, Ed. ACM Press, Montreal, Canada, 224-235.
  64. Wickline, P., Lee, P., Pfenning, F., and Davies, R. 1998. Modal types as staging specifications for run-time code generation. ACM Computing Surveys 30, 3es.