Academia.eduAcademia.edu

Outline

Recommender System Based on User-generated Content

2007

Abstract

Recommender systems apply statistical and knowledge discovery techniques to the problem of making recommendations during live user interaction. This paper describes a novel approach of building recommender systems for the Web with the aid of usergenerated content.

References (13)

  1. S.M. McNee, J. Riedl, and J.A. Konstan. "Being Accurate is Not Enough: How Accuracy Metrics have hurt Recommender Systems". In the Extended Abstracts of the 2006 ACM Conference on Human Factors in Computing Systems (CHI 2006), Montreal, Canada, April 2006.
  2. Andras a. Benczur, Karoly Csalogany, Tamas Sarlos Mate, and Uher. SpamRank -Fully Automatic Link Spam Detection, work in progress, Computer and Automation Research Institute, Hungsrian Academy of Sciences, 2005.
  3. A.-L. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of random networks: the topology of the word-wide web. Physica A, 281:69-77, 2000.
  4. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal. Stochastic models for the web graph. In Proceedings of the 41st IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2000.
  5. R. Cohen and S. Havlin, Scale-free networks are ultrasmall, Phys. Rev. Lett. 90, 058701 2003.
  6. Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhingran, Tapas Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A. Tomlin, and Jason Y. Zien. SemTag and Seeker: Bootstrapping the semantic web via automated semantic annotation. IBM Almaden Research Center, 2003.
  7. TAP ontology page. http://ontap.stanford.edu/
  8. Natalia Kolova. Automatic ontology extraction for document classification. Computer science department, Saarland University, 2005.
  9. David Vallet, Miriam Fernández, and Pablo Castells. An Ontology-Based Information Retrieval Model. Universidad Autonoma de Madrid.
  10. Goldberg, D., Nichols, D., Oki, B. M., and Terry,D. Using Collaborative Filtering to Weave an Information Tapestry. Communication of ACM, 1992.
  11. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. GroupLens: An open Architecture for Collaborative Filtering of Netnews. Proceedings of CSCW, 1994.
  12. Resnik, P., and Varian, H. R. Recommender Systems. Special issue of Communication of the ACM, 40(3), 1997.
  13. J. Schafer, J. Konstan, and J. Riedl. Electronic commerce recommender applications. Data Mining and Knowledge Discovery, Jan. 2001.