On digit expansions with respect to linear recurrences
1989, Journal of Number Theory
https://doi.org/10.1016/0022-314X(89)90011-5Abstract
An explicit formula for the mean value of the sum-of-digits function with respect to linear recurring sequences is established. Thus a recent paper of J. Coquet and P. Van Den Bosch on the Fibonacci number system is extended to the general case. Q
References (7)
- A. BRAUER, On algebraic equations with all but on root in the interior of the unit circle, Math. Nuchr. 4 (19X), 25@257.
- J. C~QUET AND P. VAN DEN BOSCH, A summation formula involving Fibonacci digits, J. Number Theory 22 (1986), 1399146.
- H. DELANGE, Sur la fonction sommatoire de la fonction "Somme des Chiffres," Enseign. Math. 21 (1975), 31-77.
- L. K. HUA AND Y. WANG, "Applications of Number Theory to Numerical Analysis," Springer-Verlag, Berlin/Heidelberg/New York, 1981.
- P. KIRSCHENHOFER, H. PIIODINGER, AND R. TICHY, Uber die Ziffemsumme natiirlicher Zahlen und verwandte Probleme, in "Lect. Notes in Math.," Vol. 114 (Zahlentheoretische Analysis, E. Hlawka, Ed.), pp. 55-65.
- P. KIRSCHENHOFER AND R. TICHY, On the distribution of digits in Cantor representations of integers, J. Number Theory 18 (1984), 121-134.
- W. PARRY, On the /?-expansions of real numbers, Acra Math. Acad. Sci. Hungur. 12 (1961), 401416.