Academia.eduAcademia.edu

Outline

On digit expansions with respect to linear recurrences

1989, Journal of Number Theory

https://doi.org/10.1016/0022-314X(89)90011-5

Abstract

An explicit formula for the mean value of the sum-of-digits function with respect to linear recurring sequences is established. Thus a recent paper of J. Coquet and P. Van Den Bosch on the Fibonacci number system is extended to the general case. Q

References (7)

  1. A. BRAUER, On algebraic equations with all but on root in the interior of the unit circle, Math. Nuchr. 4 (19X), 25@257.
  2. J. C~QUET AND P. VAN DEN BOSCH, A summation formula involving Fibonacci digits, J. Number Theory 22 (1986), 1399146.
  3. H. DELANGE, Sur la fonction sommatoire de la fonction "Somme des Chiffres," Enseign. Math. 21 (1975), 31-77.
  4. L. K. HUA AND Y. WANG, "Applications of Number Theory to Numerical Analysis," Springer-Verlag, Berlin/Heidelberg/New York, 1981.
  5. P. KIRSCHENHOFER, H. PIIODINGER, AND R. TICHY, Uber die Ziffemsumme natiirlicher Zahlen und verwandte Probleme, in "Lect. Notes in Math.," Vol. 114 (Zahlentheoretische Analysis, E. Hlawka, Ed.), pp. 55-65.
  6. P. KIRSCHENHOFER AND R. TICHY, On the distribution of digits in Cantor representations of integers, J. Number Theory 18 (1984), 121-134.
  7. W. PARRY, On the /?-expansions of real numbers, Acra Math. Acad. Sci. Hungur. 12 (1961), 401416.