Domination, radius, and minimum degree
2009, Discrete Applied Mathematics
https://doi.org/10.1016/J.DAM.2009.04.009Abstract
We prove sharp bounds concerning domination number, radius, order and minimum degree of a graph. In particular, we prove that if G is a connected graph of order n, domination number γ and radius r, then 2 3 r ≤ γ ≤ n − 4 3 r + 2 3 . Equality is achieved in the upper bound if, and only if, G is a path or a cycle on n vertices with n ≡ 4(mod 6). Further, if G has minimum degree δ ≥ 3 and r ≥ 6, then using a result due to Erdös, Pach, Pollack, and Tuza [P. Erdös, J. Pach, R. Pollack, Z. Tuza, Radius, diameter, and minimum degree. J.
References (9)
- N. Alon, Transversal number of uniform hypergraphs, Graphs Combin. 6 (1990) 1-4.
- E. DeLaViña, Q. Liu, R. Pepper, B. Waller, D.B. West, Some conjectures of Graffiti.pc on total domination, Congr. Numer. 185 (2007) 81-95.
- DeLaViña, R. Pepper, B. Waller, Lower bounds for the domination number, Manuscript April 2008. http://cms.uhd.edu/faculty/delavinae/research/ dom-lower-bounds-April17.pdf.
- P. Erdös, J. Pach, R. Pollack, Z. Tuza, Radius, diameter, and minimum degree, J. Combin. Theory B 47 (1989) 73-79.
- T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
- M.A. Henning, A. Yeo, A transition from total domination in graphs to transversals in hypergraphs, Quaest. Math. 30 (2007) 417-436.
- C. Jordan, Sur les assemblages des lignes, J. Reine Angew. Math. 70 (1869) 185-190.
- B.A. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996) 277-295.