Academia.eduAcademia.edu

Outline

Graphs with forbidden subgraphs

1971, Journal of Combinatorial Theory, Series B

https://doi.org/10.1016/0095-8956(71)90065-7

Abstract

Many graphs which are encountered in the study of graph theory are characterized by a type of configuration or subgraph they possess. However, there are occasions when such graphs are more easily defined or described by the kind of subgraphs they are not permitted to contain. For example, a tree can be defined as a connected graph which contains no cycles, and Kuratowski characterized planar graphs as those graphs which fail to contain subgraphs homeomorphic from the complete graph KS or the complete bipartite graph K3.s .

References (33)

  1. M. BEHZAD, Graphs and Their Chromatic Numbers, Doctoral Thesis, Michigan State University, 1965.
  2. M. BEHZAD, A Criterion for the Planarity of the Total Graph, Proc. Cambridge Philos. Sot. 63 (1967), 679-681.
  3. L. W. BEINEKE, Decompositions of Complete Graphs into Forests, Magyar Tud. Akad. Mat, Kutatd Znt. K&l. 9 (1964), 589-594.
  4. L. W. BEINEKE, On the Decomposition of Complete Graphs into Planar and Other Subgraphs, Doctoral Thesis, The University of Michigan, 1965.
  5. L. W. BEINEKE, Topological Aspects of Complete Graphs, Theory of Graphs, Academic Press, New York, 1968, pp. 19-26.
  6. L. W. BEINEKE AND G. CHARTRAND, The Coarseness of a Graph, Compositio Math. 19 (1969), 290-298.
  7. I. L. W. BEINEKE AND F. HARARY, Inequalities involving the Genus of a Graph and Its Thicknesses, GIusgow Math. J. 7 (1965), 19-21.
  8. L. W. BEINEKE AND F. HARARY, The Thickness of the Complete Graph, Can&. J. Math. 17 (1965), 618-620.
  9. L. W. BEINEKE, F. HARARY, AND J. W. MOON, On the Thickness of the Complete Bipartite Graph, Proc. Cambridge Philos. Sot. 60 (1964), l-5.
  10. C. BERGE, Graph Theory and Its Applications, Wiley, New York, 1962.
  11. G. CHARTRAND, D. GELLER, AND S. HEDETNIEMI, A Generalization of the Chromatic Number, Proc. Cambridge Philos. Sot. 64 (1968), 265-271.
  12. G. CHARTRAND AND F. HARARY, Planar Permutation Graphs, Ann. Inst. H. PoincurP Sect. B 3 (1967), 433-438.
  13. M. K. FORT, JR., AND G. A. HEDLUND, Minimal Coverings of Pairs of Triples, Pacific J. Math. 8 (19581, 709-719.
  14. R. K. GUY, A Coarseness Conjecture of Erdos, J. Combinatorial Theory 3 (1967).
  15. R. K. GUY, A Problem of Zurankiewicz, Research Paper No. 12, University of Calgary, 1967.
  16. R. K. GUY AND L. W. BEINEKE, The Coarseness of the Complete Graph, Cunud. J. Math. 20 (1968), 888-894.
  17. R. HALIN, iiber einen graphentheoretischen Busisbegkff und seine Anwendung auf Fiirbungsprobleme, Doctoral Thesis, Universitat zu Koln, 1962.
  18. F. HARARY, Gruph Theory, Addison-Wesley, Reading, Mass., 1969.
  19. F. HARARY AND W. T. TUTTE, A Dual Form of Kuratowski's Theorem, Cunud. Math. Bull. 8 (1965), 17-20.
  20. S. HEDETNIEMI, Homomorphisms of Graphs and Automata, Doctoral Thesis, The University of Michigan, 1966.
  21. A. B. KEMPE, On the Geographical Problem of the Four Colors, Amer. J. Math.
  22. C. KURATOWSKI, Sur le Probleme des Courbes gauches en Topologie, Fund. Math. 15 (1930), 271-283.
  23. C. NASH-WILLIAMS, Decompositions of Finite Graphs into Forests, J. London Math. Sot. 39 (1964), 12.
  24. 0. ORE, Theory ofGraphs, (Colloquium Publ. 38). American Mathematical Society, Providence, R. I., 1962.
  25. 0. ORE, The Four Color Problem, Academic Press, New York, 1967.
  26. J. SEDLAEEK, Some Properties of Interchange Graphs, Theory of Graphs and Its Applications (M. Fiedler, ed.), Academic Press, New York, 1965, pp. 145-150.
  27. D. T. TANG, A Class of Planar Graphs Containing Hamilton Circuits, IBM Z7es. Note NC503 (1965).
  28. W. T. TUTTE, On the Problem of Decomposing a Graph into n-Connected Factors, J. London Math. Sot. 36 (1961), 221-230.
  29. W. T. TUTTE, The Thickness of a Graph, Zndugutiones Math. 25 (1963), 567-577.
  30. K. WAGNER, Bemerkungen zum Vierfarbenproblem, Jber. Dentsch. Math.-Verein 46 (1936), 26-32.
  31. K. WAGNER, Uber eine Erweiterung eines Satzes von Kuratowski, Deut. Math.
  32. K. WAGNER, Bemerkungen zu Hadwigers Vermutung, Math. Ann. 141 (1960), 433451.
  33. H. WHITNEY, Congruent Graphs and the Connectivity of Graphs, Amer. J. Math. 54 (1932), 150-168.