A neuronal device for the control of multi-step computations
2013, Papers in Physics
https://doi.org/10.4279/PIP.050006Abstract
We describe the operation of a neuronal device which embodies the computational principles of the "paper-and-pencil" machine envisioned by Alan Turing. The network is based on principles of cortical organization. We develop a plausible solution to implement pointers and investigate how neuronal circuits may instantiate the basic operations involved in assigning a value to a variable (i.e., x = 5), in determining whether two variables have the same value and in retrieving the value of a given variable to be accessible to other nodes of the network. We exemplify the collective function of the network in simplified arithmetic and problem solving (blocks-world) tasks. *
References (58)
- M Platt, P Glimcher, Neural correlates of de- cision variables in parietal cortex, Nature 400, 233 (1999).
- J D Schall, Neural basis of deciding, choosing and acting, Nat. Rev. Neurosci. 2, 33 (2001).
- J I Gold, M N Shadlen, The neural basis of decision making, Annu. Rev. Neurosci. 30, 535 (2007).
- P R Roelfsema, P S Khayat, H Spekreijse, Subtask sequencing in the primary visual cor- tex., P. Natl. Acad. Sci. USA 100, 5467 (2003).
- R Romo, E Salinas, Flutter discrimination: Neural codes, perception, memory and decision making, Nat. Rev. Neurosci. 4, 203 (2003).
- S I Moro, M Tolboom, P S Khayat, P R Roelf- sema, Neuronal activity in the visual cortex reveals the temporal order of cognitive opera- tions, J. Neurosci. 30, 16293 (2010).
- A Newell, Unified theories of cognition, Harvard University Press, Cambridge, Mas- sachusetts (1990).
- J R Anderson, C J Lebiere, The atomic com- ponents of thought, Lawrence Erlbaum, Mah- wah, New Jersey (1998).
- S Ullman, Visual routines, Cognition 18, 97 (1984).
- A Newell, Productions systems: Models of con- trol structures, In: Visual Information Pro- cessing, Ed. W G Chase, Pag. 463, Academic Press, New York (1973).
- S Dehaene, M Sigman, From a single decision to a multi-step algorithm, Curr. Opin. Neuro- bio. 22, 937 (2012).
- J Gottlieb, P Balan, Attention as a decision in information space, Trends Cogn. Sci. 14, 240 (2010).
- J D Roitman, M N Shadlen, Response of neu- rons in the lateral intraparietal area during a combined visual discrimination reaction time task, J. Neurosci. 22, 9475 (2002).
- M N Shadlen, W T Newsome, Motion percep- tion: Seeing and deciding, P. Natl. Acad. Sci. USA 93, 628 (1996).
- Y Huang, A Friesen, T Hanks, M Shadlen, R Rao, How prior probability influences de- cision making: A unifying probabilistic model, In: Advances in Neural Information Process- ing Systems 25, Eds. P Bartlett, F C N Pereira, C J Ca L Burges, L Bottou, K Q Weinberger, Pag. 1277, Lake Tahoe, Nevada (2012).
- L P Sugrue, G S Corrado, W T Newsome, Matching behavior and the representation of value in the parietal cortex, Science 304, 1782 (2004).
- J D Wallis, K C Anderson, E K Miller, Sin- gle neurons in prefrontal cortex encode abstract rules, Nature 411, 953 (2001).
- J Von Neumann, The computer and the brain, Yale University Press, New Haven, Connecti- cut (1958).
- A Zylberberg, S Dehaene, P R Roelfsema, M Sigman, The human Turing machine: A neural framework for mental programs, Trends Cogn. Sci. 15, 293 (2011).
- G Maimon, J A Assad, A cognitive signal for the proactive timing of action in macaque lip, Nat. Neurosci. 9, 948 (2006).
- M N Shadlen, R Kiani, T D Hanks, A K Churchland, Neurobiology of decision making an intentional framework, In: Better Than Conscious?, Eds. C Engel, W Singer, Pag. 71, MIT Press, Massachusetts (2008).
- A Zylberberg, S Dehaene, G B Mindlin, M Sig- man, Neurophysiological bases of exponen- tial sensory decay and top-down memory re- trieval: A model, Front. Comput. Neurosci. 3, 4 (2009).
- G Mongillo, O Barak, M Tsodyks, Synaptic theory of working memory, Science 319, 1543 (2008).
- R C O'Reilly, Biologically based computational models of high-level cognition, Science 314, 91 (2006).
- L Shastri, V Ajjanagadde, et al., From sim- ple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal syn- chrony, Behav. Brain Sci. 16, 417 (1993).
- R Hahnloser, R J Douglas, M Mahowald, K Hepp, Feedback interactions between neu- ronal pointers and maps for attentional pro- cessing, Nat. Neurosci. 2, 746 (1999).
- X j Wang, Introduction to computational neuroscience, Technical report Volen Cen- ter for Complex Systems, Brandeis University, Waltham, Massachusetts (2006).
- C Carr, M Konishi, A circuit for detection of interaural time differences in the brain stem of the barn owl, J. Neurosci. 10, 3227 (1990).
- J Slaney, S Thiébaux, Blocks world revisited, Artif. Intell. 125, 119 (2001).
- P R Roelfsema, V A Lamme, H Spekreijse, The implementation of visual routines, Vision Res. 40, 1385 (2000).
- P R Roelfsema, Elemental operations in vi- sion, Trends Cogn. Sci. 9, 226 (2005).
- S Dehaene, J P Changeux, Development of elementary numerical abilities: A neuronal model, J. Cognitive Neurosci. 5, 390 (1993).
- M Piazza, V Izard, P Pinel, D Le Bihan, S Dehaene, Tuning curves for approximate numerosity in the human intraparietal sulcus, Neuron 44, 547 (2004).
- A Nieder, S Dehaene, Representation of num- ber in the brain, Annu. Rev. Neurosci. 32, 185 (2009).
- C Lebiere, The dynamics of cognition: An ACT-R model of cognitive arithmetic, Doc- toral dissertation. Carnegie Mellon University, Pittsburgh, Pennsylvania (1998).
- D Y Ts'o, C D Gilbert, T N Wiesel, Rela- tionships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis, J. Neu- rosci. 6, 1160 (1986).
- B A McGuire, C D Gilbert, P K Rivlin, T N Wiesel, Targets of horizontal connections in macaque primary visual cortex, J. Comp. Neurol. 305, 370 (1991).
- C D Gilbert, Y Daniel, T N Wiesel, Lateral in- teractions in visual cortex, In: From pigments to perception, Eds. A Valberg, B B Lee, Pag. 239, Plenun Press, New York (1991).
- M Sigman, G A Cecchi, C D Gilbert, M O Magnasco, On a common circle: Natural scenes and gestalt rules, P. Natl. Acad. Sci. USA 98, 1935 (2001).
- C D Gilbert, M Sigman, R E Crist, The neural basis of perceptual learning, Neuron 31, 681 (2001).
- C D Gilbert, M Sigman, Brain states: Top- down influences in sensory processing, Neuron 54, 677 (2007).
- M K Kapadia, M Ito, C D Gilbert, G West- heimer, Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in v1 of alert monkeys, Neuron 15, 843 (1995).
- V A Lamme, P R Roelfsema, The distinct modes of vision offered by feedforward and re- current processing., Trends Neurosci. 23, 571 (2000).
- S Thorpe, D Fize, C Marlot, Speed of process- ing in the human visual system, Nature 381, 520 (1996).
- D J Felleman, D C Van Essen, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex 1, 1 (1991).
- G Sperling, The information available in brief visual presentations, Psychol. Monogr. Gen. A. 74, 1 (1960).
- M Graziano, M Sigman, The dynamics of sensory buffers: Geometric spatial and experience-dependent shaping of iconic mem- ory, J. Vision 8, 1 (2008).
- F Hamker, The role of feedback connections in task-driven visual search, In: Connection- ist models in cognitive neuroscience, Eds. D Heinke et al., Pag. 252, Springer-Verlag, Lon- don (1999).
- F H Hamker, A dynamic model of how feature cues guide spatial attention, Vision Res. 44, 501 (2004).
- D Heinke, G W Humphreys, Attention, spa- tial representation, and visual neglect: Sim- ulating emergent attention and spatial mem- ory in the selective attention for identification model (saim)., Psychol. Rev. 110, 29 (2003).
- T Shallice, Specific impairments of planning, Phil. Trans. R. Soc. Lond. B 298, 199 (1982).
- D H Ballard, M M Hayhoe, P K Pook, R P N Rao, Deictic codes for the embodiment of cognition, Behav. Brain Sci. 20, 723 (1997).
- A Zylberberg, L Paz, P R Roelfsema, S Dehaene, M Sigman, Supplemen- tary Material to this paper, available at www.papersinphysics.org (2013).
- R S Sutton, A G Barto, Reinforcement learning: An introduction, MIT Press, Mas- sachusetts (1998).
- P R Roelfsema, A van Ooyen, T Watanabe, Perceptual learning rules based on reinforcers and attention., Trends Cogn. Sci. 14, 64 (2010).
- J O Rombouts, S M Bohte, P R Roelfsema, Neurally plausible reinforcement learning of working memory tasks, In: Advances in Neu- ral Information Processing Systems 25, Eds.
- P Bartlett, F C N Pereira, C J Ca L Burges, L Bottou, K Q Weinberger, Pag. 1880, Lake Tahoe, Nevada (2012).
- S Dehaene, J P Changeux, A hierarchical neu- ronal network for planning behavior, P. Natl. Acad. Sci. USA 94, 13293 (1997).