Academia.eduAcademia.edu

Outline

Dynamic Shortest Paths Containers

2004, Electronic Notes in Theoretical Computer Science

https://doi.org/10.1016/J.ENTCS.2003.12.023

Abstract

Using a set of geometric containers to speed up shortest path queries in a weighted graph has been proven a useful tool for dealing with large sparse graphs. Given a layout of a graph G = (V, E), we store, for each edge (u, v) ∈ E, the bounding box of all nodes t ∈ V for which a shortest u-t-path starts with (u, v). Shortest path queries can then be answered by Dijkstra's algorithm restricted to edges where the corresponding bounding box contains the target.

References (22)

  1. Ausiello, G., G. F. Italiano, A. Marchetti-Spaccamela and U. Nanni, Incremental algorithms for minimal length paths, Journal of Algorithms 12 (1991), pp. 615-638.
  2. Barrett, C., K. Bisset, R. Jacob, G. Konjevod and M. Marathe, Classical and contemporary shortest path problems in road networks: Implementation and experimental analysis of the transims router, in: R. Möhring and R. Raman, editors, ESA 2002, LNCS 2461 (2002), pp. 126-138.
  3. Barrett, C., R. Jacob and M. Marathe, Formal-language-constrained path problems, SIAM Journal on Computing 30 (2000), pp. 809-837. URL http://epubs.siam.org/sam-bin/dbq/article/33771
  4. Demetrescu, C. and G. F. Italiano, A new approach to dynamic all pairs shortest paths, in: Proceedings of the thirty-fifth ACM Symposium on Theory of Computing (STOC 2003) (2003), pp. 159 -166. URL http://doi.acm.org/10.1145/780542.780567
  5. Dijkstra, E. W., A note on two problems in connexion with graphs, Numerische Mathematik 1 (1959), pp. 269-271.
  6. Even, S. and H. Gazit, Updating distances in dynamic graphs, Methods of Operations Research 49 (1985), pp. 371-387.
  7. Frigioni, D., Semidynamic algorithms for maintaining single-source shortest path trees, Algorithmica 22 (1998), pp. 250-274. URL http://www.springerlink.com/link.asp?id=23udd5uwx8lp
  8. Frigioni, D., A. Marchetti-Spaccamela and U. Nanni, Fully dynamic output bounded single source shortest path problem, in: SODA, 1996, pp. 212-221.
  9. King, V., Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs, in: Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS'99), 1999, pp. 81-91.
  10. Müller-Hannemann, M. and K. Weihe, Pareto shortest paths is often feasible in practice, in: G. Brodal, D. Frigioni and A. Marchetti-Spaccamela, editors, WAE 2001, LNCS 2461 (2001), pp. 185-197.
  11. Nachtigall, K., Time depending shortest-path problems with applications to railway networks, European Journal of Operational Research 83 (1995), pp. 154-166.
  12. Pohl, I., Bi-directional search, in: B. Meltzer and D. Michie, editors, Sixth Annual Machine Intelligence Workshop, Machine Intelligence 6 (1971), pp. 137- 140.
  13. Preuss, T. and J.-H. Syrbe, An integrated traffic information system, in: Proc. 6th Int. Conf. Appl. Computer Networking in Architecture, Construction, Design, Civil Eng., and Urban Planning (europIA '97), 1997.
  14. Ramalingam, G. and T. W. Reps, An incremental algorithm for a generalization of the shortest-path problem, Journal of Algorithms 21 (1996), pp. 267-305.
  15. Ramalingam, G. and T. W. Reps, On the computational complexity of dynamic graph problems, Theoretical Computer Science 158 (1996), pp. 233-277.
  16. Rohnert, H., A dynamization of the all pairs least cost path problem, in: Proc. Symp. Theoretical Aspects of Computer Science (STACS'85), LNCS 182 (1985), pp. 279-286.
  17. Schulz, F., D. Wagner and K. Weihe, Dijkstra's algorithm on-line: An empirical case study from public railroad transport, Journal of Experimental Algorithmics 5 (2000). URL http://www.jea.acm.org/2000/SchulzDijkstra/
  18. Shekhar, S., A. Fetterer and B. Goyal, Materialization trade-offs in hierarchical shortest path algorithms, in: Symposium on Large Spatial Databases, 1997, pp. 94-111.
  19. Siklóssy, L. and E. Tulp, Trains, an active time-table searcher, in: Proc. 8th European Conf. Artificial Intelligence, 1988, pp. 170-175.
  20. Wagner, D. and T. Willhalm, Geometric speed-up techniques for finding shortest paths in large sparse graphs, in: Proc. 11th European Symposium on Algorithms (ESA 2003), LNCS (2003), to appear.
  21. Zahn, F. B. and C. E. Noon, A comparison between label-setting and label- correcting algorithms for computing one-to-one shortest paths, Journal of Geographic Information and Decision Analysis 4 (2000). URL http://www.geodec.org/
  22. Zaroliagis, C., Implementations and experimental studies of dynamic graph algorithms, in: R. Fleischer, B. Moret and E. M. Schmidt, editors, Experimental Algorithmics, LNCS 2547 (2002), pp. 229-278.