Dynamic Shortest Paths Containers
2004, Electronic Notes in Theoretical Computer Science
https://doi.org/10.1016/J.ENTCS.2003.12.023Abstract
Using a set of geometric containers to speed up shortest path queries in a weighted graph has been proven a useful tool for dealing with large sparse graphs. Given a layout of a graph G = (V, E), we store, for each edge (u, v) ∈ E, the bounding box of all nodes t ∈ V for which a shortest u-t-path starts with (u, v). Shortest path queries can then be answered by Dijkstra's algorithm restricted to edges where the corresponding bounding box contains the target.
References (22)
- Ausiello, G., G. F. Italiano, A. Marchetti-Spaccamela and U. Nanni, Incremental algorithms for minimal length paths, Journal of Algorithms 12 (1991), pp. 615-638.
- Barrett, C., K. Bisset, R. Jacob, G. Konjevod and M. Marathe, Classical and contemporary shortest path problems in road networks: Implementation and experimental analysis of the transims router, in: R. Möhring and R. Raman, editors, ESA 2002, LNCS 2461 (2002), pp. 126-138.
- Barrett, C., R. Jacob and M. Marathe, Formal-language-constrained path problems, SIAM Journal on Computing 30 (2000), pp. 809-837. URL http://epubs.siam.org/sam-bin/dbq/article/33771
- Demetrescu, C. and G. F. Italiano, A new approach to dynamic all pairs shortest paths, in: Proceedings of the thirty-fifth ACM Symposium on Theory of Computing (STOC 2003) (2003), pp. 159 -166. URL http://doi.acm.org/10.1145/780542.780567
- Dijkstra, E. W., A note on two problems in connexion with graphs, Numerische Mathematik 1 (1959), pp. 269-271.
- Even, S. and H. Gazit, Updating distances in dynamic graphs, Methods of Operations Research 49 (1985), pp. 371-387.
- Frigioni, D., Semidynamic algorithms for maintaining single-source shortest path trees, Algorithmica 22 (1998), pp. 250-274. URL http://www.springerlink.com/link.asp?id=23udd5uwx8lp
- Frigioni, D., A. Marchetti-Spaccamela and U. Nanni, Fully dynamic output bounded single source shortest path problem, in: SODA, 1996, pp. 212-221.
- King, V., Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs, in: Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS'99), 1999, pp. 81-91.
- Müller-Hannemann, M. and K. Weihe, Pareto shortest paths is often feasible in practice, in: G. Brodal, D. Frigioni and A. Marchetti-Spaccamela, editors, WAE 2001, LNCS 2461 (2001), pp. 185-197.
- Nachtigall, K., Time depending shortest-path problems with applications to railway networks, European Journal of Operational Research 83 (1995), pp. 154-166.
- Pohl, I., Bi-directional search, in: B. Meltzer and D. Michie, editors, Sixth Annual Machine Intelligence Workshop, Machine Intelligence 6 (1971), pp. 137- 140.
- Preuss, T. and J.-H. Syrbe, An integrated traffic information system, in: Proc. 6th Int. Conf. Appl. Computer Networking in Architecture, Construction, Design, Civil Eng., and Urban Planning (europIA '97), 1997.
- Ramalingam, G. and T. W. Reps, An incremental algorithm for a generalization of the shortest-path problem, Journal of Algorithms 21 (1996), pp. 267-305.
- Ramalingam, G. and T. W. Reps, On the computational complexity of dynamic graph problems, Theoretical Computer Science 158 (1996), pp. 233-277.
- Rohnert, H., A dynamization of the all pairs least cost path problem, in: Proc. Symp. Theoretical Aspects of Computer Science (STACS'85), LNCS 182 (1985), pp. 279-286.
- Schulz, F., D. Wagner and K. Weihe, Dijkstra's algorithm on-line: An empirical case study from public railroad transport, Journal of Experimental Algorithmics 5 (2000). URL http://www.jea.acm.org/2000/SchulzDijkstra/
- Shekhar, S., A. Fetterer and B. Goyal, Materialization trade-offs in hierarchical shortest path algorithms, in: Symposium on Large Spatial Databases, 1997, pp. 94-111.
- Siklóssy, L. and E. Tulp, Trains, an active time-table searcher, in: Proc. 8th European Conf. Artificial Intelligence, 1988, pp. 170-175.
- Wagner, D. and T. Willhalm, Geometric speed-up techniques for finding shortest paths in large sparse graphs, in: Proc. 11th European Symposium on Algorithms (ESA 2003), LNCS (2003), to appear.
- Zahn, F. B. and C. E. Noon, A comparison between label-setting and label- correcting algorithms for computing one-to-one shortest paths, Journal of Geographic Information and Decision Analysis 4 (2000). URL http://www.geodec.org/
- Zaroliagis, C., Implementations and experimental studies of dynamic graph algorithms, in: R. Fleischer, B. Moret and E. M. Schmidt, editors, Experimental Algorithmics, LNCS 2547 (2002), pp. 229-278.