Academia.eduAcademia.edu

Outline

Random Sidon Sequences

1999, Journal of Number Theory

https://doi.org/10.1006/JNTH.1998.2325

Abstract

A subset A of the set n] = f1; 2; : : :

References (8)

  1. N. ALON and J. SPENCER, \The Probabilistic Method," John Wiley and Sons, Inc., New York, 1992.
  2. A.D. BARBOUR, L. HOLST and S. JANSON, \Poisson Approximation," Oxford University Press, Oxford, 1992.
  3. P. ERD } OS and S. FREUD, On sums of a Sidon sequence, J. Number Theory 38 (1991), 196{205.
  4. S.W. GRAHAM, B h sequences, in \Analytic Number Theory", Proceedings of a Con- ference in Honor of Heini Halberstam, eds. B.C. Berndt, H.G. Diamond and A.J. Hildebrand, Birkh auser 1996, 431{449.
  5. H. HALBERSTAM and K. ROTH, \Sequences," Springer-Verlag, New York, 1983.
  6. B. LINDSTR OM, An inequality for B 2 sequences, J. Comb. Theory 6 (1969), 211{212.
  7. M.B. NATHANSON, \Additive Number Theory: Inverse Problems and the Geometry of Sumsets", Springer-Verlag, New York, 1996.
  8. J. SPENCER and P. TETALI, Sidon sets with small gaps, in \Discrete Probability and Algorithms," The IMA Volumes in Mathematics and its Applications, Vol. 72, D. Aldous, P. Diaconis, J. Spencer and J. M. Steele, eds., Springer-Verlag, New York, 1995.