Academia.eduAcademia.edu

Outline

Query Answering over Ontologies

Abstract

Ontologies and rules play a central role in the development of the Semantic Web. Recent research in this context focuses especially on highly scalable formalisms for the Web of Data, which may highly benefit from exploiting database technologies. In this paper, as a first step towards closing the gap between the Semantic Web and databases, we introduce a family of expressive extensions of Datalog, called Datalog±, as a new paradigm for query answering over ontologies. The Datalog± family admits existentially quantified variables in rule heads, and has suitable restrictions to ensure highly efficient ontology querying. We show in particular that different versions of Datalog± generalize the tractable description logic ℇℒ and the DL-Lite family of tractable description logics, which are the most common tractable ontology languages in the context of the Semantic Web and databases. We also show how stratified negation can be added to Datalog± while keeping ontology querying tractable. Furthermore, the Datalog± family is of interest in its own right, and can, moreover, be used in various contexts such as data integration and data exchange. It paves the way for applying results from databases to the context of the Semantic Web.

References (107)

  1. CL-RR-10-21 are at most β γ d at level 0. If we consider the whole query Q (with |Q| = n), the number of level 0-ancestors of its atoms is at most n • β γ d . An FO-rewriting for Q is thus constructed as follows. Take all possible sets of n • β γ d atoms using predicates in R and having constants from Q and (at most n • β γ d • w, where w is the maximal arity of a predicate in R) nulls as arguments. Then, considering them as a database B, compute chase γ d (B, Σ). Finally, whenever Q can be homomorphically mapped to chase γ d (B, Σ), take all atoms in B, transform the nulls into distinct variables, and make the logical conjunction φ out of the resulting atoms. The existential closure of the logical disjunction of all such conjunctions φ is the rewriting of Q relative to Σ, denoted Q Σ . Observe now that, for every database D for R, it holds that D |= Q Σ iff D ∪ Σ |= Q (i.e., chase(D, Σ) |= Q): this is because every conjunction in Q Σ corresponds to some derivation of n atoms (soundness), and every derivation of n atoms in the levels of the chase up to γ d (i.e., all those sufficient to check whether chase(D, Σ) |= Q) corresponds to a conjunction in Q Σ (completeness). References
  2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
  3. S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates. J. Comput. Syst. Sci., 43(1):62- 124, 1991.
  4. A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, M. Palmieri, and R. Rosati. QuOnto: Querying ontologies. In Proc. AAAI-2005, pp. 1670-1671, 2005.
  5. H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded fragments of predicate logic. J. Phil. Log., 27(3):217-274, 1998.
  6. R. Angles and C. Gutierrez. The expressive power of SPARQL. In Proc. ISWC-2008, pp. 114-129, 2008.
  7. G. Antoniou. Non-monotonic rule systems on top of ontology layers. In Proc. ISWC-2002, pp. 394-398, 2002.
  8. K. R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pp. 89-148. Morgan Kaufmann, 1988.
  9. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-Lite in the light of first-order logic. In Proc. AAAI-2007, pp. 361-366, 2007.
  10. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and relations. J. Artif. Intell. Res., 36:1-69, 2009. CL-RR-10-21
  11. F. Baader. Least common subsumers and most specific concepts in a description logic with existential restrictions and terminological cycles. In Proc. IJCAI-2003, pp. 319-324, 2003.
  12. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. IJCAI-2005, pp. 364-369, 2005.
  13. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL -A polynomial-time reasoner for life science ontologies. In Proc. IJCAR-2006, pp. 287-291, 2006.
  14. J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules with existential variables: Walking the decid- ability line. Artif. Intell., 175(9/10):1620-1654, 2011.
  15. J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo. Walking the complexity lines for generalized guarded existential rules. In Proc. IJCAI-2011, pp. 712-717, 2011.
  16. V. Barany, G. Gottlob, and M. Otto. Querying the guarded fragment. In Proc. LICS-10, pp. 1-10, 2010. Full paper available from the authors.
  17. C. Beeri and M. Y. Vardi. The implication problem for data dependencies. In Proc. ICALP-1981, pp. 73-85, 1981.
  18. C. Beeri and M. Y. Vardi. A proof procedure for data dependencies. J. ACM, 31(4):718-741, 1984.
  19. B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev and R. Velkov. OWLIM: A family of scalable semantic repositories. J. of Web Semantics, 2(1):33-42, 2011.
  20. D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema, 2004. W3C Recom- mendation (10 Feb. 2004). http://www.w3.org/TR/rdf-schema/.
  21. J. D. Bruijn, T. Eiter, A. Polleres, and H. Tompits. Embedding non-ground logic programs into autoepistemic logic for knowledge base combination. In Proc. IJCAI-2007, pp. 304-309, 2007.
  22. L. Cabibbo. The expressive power of stratified logic programs with value invention. Inf. Comput., 147(1):22-56, 1998.
  23. A. Calì, D. Calvanese, G. De Giacomo, and M. Lenzerini. Accessing data integration systems through conceptual schemas. In Proc. ER-2001, pp. 270-284, 2001.
  24. A. Calì, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under expressive relational constraints. In Proc. KR-2008, pp. 70-80, 2008. Revised version: http://dbai.tuwien.ac.at/staff/ gottlob/CGK.pdf.
  25. A. Calì, G. Gottlob, and T. Lukasiewicz. A general Datalog-based framework for tractable query answering over ontologies. In Proc. PODS-2009, pp. 77-86, 2009.
  26. A. Calì, G. Gottlob, and A. Pieris. Tractable query answering over conceptual schemata. In Proc. ER-2009, pp. 175-190, 2009.
  27. A. Calì, G. Gottlob, and A. Pieris. Advanced processing for ontological queries. Proc. VLDB-10, 3(1):554-565, 2010.
  28. A. Calì, G. Gottlob, and A. Pieris. Query answering under expressive Entity-Relationship schemata. In Proc. ER-10, pp. 347-361, 2010.
  29. A. Calì, G. Gottlob, and A. Pieris. Query answering under non-guarded rules in Datalog+/-. In Proc. RR-10, pp. 1-17, 2010.
  30. A. Calì and M. Kifer. Containment of conjunctive object meta-queries. In Proc. VLDB-2006, pp. 942-952, 2006.
  31. A. Calì, D. Lembo, and R. Rosati. On the decidability and complexity of query answering over inconsistent and incomplete databases. In Proc. PODS-2003, pp. 260-271, 2003.
  32. A. Calì, D. Lembo, and R. Rosati. Query rewriting and answering under constraints in data integration systems. In Proc. IJCAI-2003, pp. 16-21, 2003.
  33. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati. Linking data to ontologies: The description logic DL-Lite A . In Proc. OWLED-2006, 2006.
  34. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Can OWL model football leagues? In Proc. OWLED-2007, 2007.
  35. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385-429, 2007.
  36. A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data bases. In Proc. STOC-1977, pp. 77-90, 1977.
  37. A. K. Chandra and M. Y. Vardi. The implication problem for functional and inclusion dependencies is undecid- able. SIAM J. Comput., 14:671-677, 1985.
  38. R. Cote, D. Rothwell, J. Palotay, R. Beckett, and L. Brochu. The systematized nomenclature of human and vet- erinary medicine. Technical report, SNOMED International, Northfield, IL: College of American Pathologists, 1993.
  39. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic programming. ACM Comput. Surv., 33(3):374-425, 2001.
  40. J. de Bruijn and S. Heymans. Logical foundations of (e)RDF(S): Complexity and reasoning. In Proc. ISWC-2007, pp. 86-99, 2007.
  41. R. de Virgilio, G. Orsi, L. Tanca and R. Torlone. Semantic data markets: A flexible environment for knowledge management. In Proc. CIKM-2011, 2011.
  42. A. Deutsch, A. Nash, and J. B. Remmel. The chase revisited. In Proc. PODS-2008, pp. 149-158, 2008.
  43. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog and description logics. J. Intell. Inf. Syst., 10(3):227-252, 1998.
  44. T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set programming with description logics for the Semantic Web. Artif. Intell., 172(12/13):1495-1539, 2008.
  45. T. Eiter, G. Ianni, T. Lukasiewicz, and R. Schindlauer. Well-founded semantics for description logic programs in the Semantic Web. ACM Trans. Comput. Log., 12(2), Article 11, 2011.
  46. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order reasoning and external evaluations in answer-set programming. In Proc. IJCAI-2005, pp. 90-96, 2005.
  47. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective integration of declarative rules with external evalu- ations for Semantic Web reasoning. In Proc. ESWC-2006, pp. 273-287, 2006.
  48. T. Eiter and M. Šimkus. FDNC: Decidable nonmonotonic disjunctive logic programs with function symbols. ACM Trans. Comput. Log., 11(2), Article 14, 2010.
  49. R. Fagin. A normal form for relational databases that is based on domains and keys. ACM Trans. Database Syst., 6(3):387-415, 1981.
  50. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query answering. Theor. Comput. Sci., 336(1):89-124, 2005.
  51. B. Faltings and S. Macho-Gonzalez. Open constraint programming. Artif. Intell., 161(1/2):181-208, 2005.
  52. G. Gottlob, G. Orsi and A. Pieris. Ontological queries: Rewriting and optimization. In Proc. ICDE-2011, pp. 2-13, 2011.
  53. G. Gottlob, G. Orsi and A. Pieris. Ontological query answering via rewriting. In Proc. ADBIS-2011, pp. 1-18, 2011.
  54. G. Gottlob and T. Schwentick. Rewriting ontological queries into small nonrecursive Datalog programs. In Proc. DL-2011, 2011. See also: CoRR, abs/1106.3767, 2011. Revised version to appear in Proc. KR-2012.
  55. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: combining logic programs with description logic. In Proc. WWW-2003, pp. 48-57, 2003.
  56. V. Haarslev and R. Möller. Racer: An OWL reasoning agent for the semantic web. In Proc. Web Intelligence Workshops-2003, pp. 91-95, 2003. CL-RR-10-21
  57. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc. KR-2006, pp. 57-67, 2006.
  58. I. Horrocks, P. F. Patel-Schneider, S. Bechhofer, and D. Tsarkov. OWL rules: A proposal and prototype imple- mentation. J. Web Sem., 3(1):23-40, 2005.
  59. D. S. Johnson and A. C. Klug. Testing containment of conjunctive queries under functional and inclusion depen- dencies. J. Comput. Syst. Sci., 28(1):167-189, 1984.
  60. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages. J. ACM, 42(4):741-843, 1995.
  61. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. Combined FO rewritability for conjunctive query answering in DL-Lite. In Proc. DL-2009, 2009.
  62. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined approach to query answer- ing in DL-Lite. In Proc. KR-10, pp. 247-257, 2010.
  63. A. A. Krisnadhi and C. Lutz. Data complexity in the EL family of DLs. In Proc. DL-2007, 2007.
  64. A. A. Krisnadhi, F. Maier, and P. Hitzler. OWL and rules. Reasoning Web 2011, pp. 382-415. Springer, 2011.
  65. M. Krötzsch. Description Logic Rules. IOS Press, 2010.
  66. M. Krötzsch. Efficient rule-based inferencing for OWL EL. In Proc. IJCAI-2011, pp. 2668-2673, 2011.
  67. M. Krötzsch, F. Maier, A. A. Krisnadhi, and P. Hitzler. A better uncle for OWL: Nominal schemas for integrating rules and ontologies. In Proc. WWW-2011, pp. 645-654, 2011.
  68. M. Krötzsch, S. Rudolph, and P. Hitzler. Conjunctive queries for a tractable fragment of OWL 1.1. In Proc. ISWC/ASWC-2007, pp. 310-323. Springer, 2007.
  69. M. Krötzsch, S. Rudolph, and P. Hitzler. Description logic rules. In Proc. ECAI-2008, pp. 80-84. IOS Press, 2008.
  70. M. Krötzsch, S. Rudolph, and P. Hitzler. ELP: Tractable rules for OWL 2. In Proc. ISWC-2008, pp. 649-664, 2008.
  71. M. J. Lawley and C. Bousquet. Fast classification in Protégé: Snorocket as an OWL2 EL reasoner. In Proc. DL-2010, 2010.
  72. M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS-2002, pp. 233-246, 2002.
  73. A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in CARIN. Artif. Intell., 104(1/2):165-209, 1998.
  74. V. Lifschitz. Non-monotonic databases and epistemic queries. In Proc. IJCAI-1991, pp. 381-386, 1991.
  75. V. Lifschitz. On the declarative semantics of logic programs with negation. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pp. 177-192. Morgan Kaufmann, 1988.
  76. T. Lukasiewicz. A novel combination of answer set programming with description logics for the Semantic Web. IEEE Trans. Knowl. Data Eng., 22(11):1577-1592, 2010.
  77. T. Lukasiewicz. Probabilistic description logic programs. Int. J. Approx. Reas., 45(2):288-307, 2007.
  78. T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics for the Semantic Web. Fun- dam. Inform., 82(3):289-310, 2008.
  79. C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description logic EL using a relational database system. In Proc. IJCAI-2009, pp. 2070-2075, 2009.
  80. D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies. ACM Trans. Database Syst., 4(4):455-469, 1979.
  81. D. Mailharrow. A classification and constraint-based framework for configuration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 12(4):383-397, 1998.
  82. B. Marnette. Generalized schema-mappings: From termination to tractability. In Proc. PODS-2009, pp. 13-22, 2009.
  83. B. Motik and R. Rosati. A faithful integration of description logics with logic programming. In Proc. IJCAI- 2007, pp. 477-482, 2007.
  84. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. J. Web Sem., 3(1):41-60, 2005.
  85. M.-L. Mugnier. Ontological query answering with existential rules. In Proc. RR-2011, pp. 2-23, 2011.
  86. G. Orsi and A. Pieris. Optimizing query answering under ontological constraints. In Proc. PVLDB-2011, 2011.
  87. B. Parsia and E. Sirin. Pellet: An OWL DL reasoner. In Proc. ESWC-2004, 2004.
  88. P. F. Patel-Schneider and I. Horrocks. A comparison of two modelling paradigms in the Semantic Web. J. Web Sem., 5(4):240-250, 2007.
  89. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable query answering and rewriting under description logic constraints. J. Applied Logic, 8(2):186-209, 2010.
  90. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking data to ontologies. J. Data Semantics, 10:133-173, 2008.
  91. R. Reiter. On closed world databases. In H. Gallaire and J. Minker, editors, Logic and Databases, pp. 55-76. Plenum Press, 1978.
  92. R. Rosati. Towards expressive KR systems integrating Datalog and description logics: preliminary report. In Proc. DL-1999, 1999.
  93. R. Rosati. On the decidability and complexity of integrating ontologies and rules. J. Web Sem., 3(1):61-73, 2005.
  94. R. Rosati. DL + log: Tight integration of description logics and disjunctive Datalog. In Proc. KR-2006, pp. 68-78, 2006.
  95. R. Rosati. On the decidability and finite controllability of query processing in databases with incomplete infor- mation. In Proc. PODS-2006, pp. 356-365, 2006.
  96. R. Rosati. On conjunctive query answering in EL. In Proc DL-2007, 2007.
  97. R. Rosati and A. Almatelli. Improving query answering over DL-Lite ontologies. In Proc KR-2010, 2010.
  98. S. Rudolph, M. Krötzsch, and P. Hitzler. Cheap Boolean role constructors for description logics. In Proc. JELIA-2008, pp. 362-374, 2008.
  99. M. Sintek and S. Decker. TRIPLE -A query, inference, and transformation language for the Semantic Web. In Proc. ISWC-2002, pp. 364-378, 2002.
  100. M. Y. Vardi. On the complexity of bounded-variable queries. In Proc. PODS-1995, pp. 266-176, 1995.
  101. K. Wang, G. Antoniou, R. W. Topor, and A. Sattar. Merging and aligning ontologies in dl-programs. In Proc. RuleML-2005, pp. 160-171, 2005.
  102. Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M. Annamalai and J. Srinivasan. Implementing an inference engine for RDFS/OWL constructs and user-defined rules in Oracle. In Proc. ICDE-2008, pp. 1239-1248, 2008.
  103. W3C. OWL Web Ontology Language Overview, 2004. W3C Recommendation (10 Feb. 2004). http:// www.w3.org/TR/owl-features/.
  104. W3C. OWL 2 Web Ontology Language Document Overview, 2009. W3C Recommendation (27 Oct. 2009). http://www.w3.org/TR/owl2-overview/.
  105. W3C. OWL 2 Web Ontology Language Profiles, 2009. W3C Recommendation (27 Oct. 2009). http:// www.w3.org/TR/owl2-profiles/.
  106. F. Yang, X. Chen, and Z. Wang. P-dl-programs: Combining dl-programs with preferences for the Semantic Web. Unpublished manuscript, August 2006.
  107. J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu and Y. Pan. Minerva: A scalable OWL ontology storage and inference system. In Proc. ASWC-2006, pp. 429-443, 2006.