Academia.eduAcademia.edu

Outline

Human metabolic atlas: an online resource for human metabolism

https://doi.org/10.1093/DATABASE/BAV068

Abstract

Human tissue-specific genome-scale metabolic models (GEMs) provide comprehensive understanding of human metabolism, which is of great value to the biomedical research community. To make this kind of data easily accessible to the public, we have designed and deployed the human metabolic atlas (HMA) website (http://www.metabolicatlas.org). This online resource provides comprehensive information about human metabolism, including the results of metabolic network analyses. We hope that it can also serve as an information exchange interface for human metabolism knowledge within the research community. The HMA consists of three major components: Repository, Hreed (Human REaction Entities Database) and Atlas. Repository is a collection of GEMs for specific human cell types and human-related microorganisms in SBML (System Biology Markup Language) format. The current release consists of several types of GEMs: a generic human GEM, 82 GEMs for normal cell types, 16 GEMs for different cancer cell types, 2 curated GEMs and 5 GEMs for human gut bacteria. Hreed contains detailed information about biochemical reactions. A web interface for Hreed facilitates an access to the Hreed reaction data, which can be easily retrieved by using specific keywords or names of related genes, proteins, compounds and cross-references. Atlas web interface can be used for visualization of the GEMs collection overlaid on KEGG metabolic pathway maps with a zoom/pan user interface. The HMA is a unique tool for studying human metabolism, ranging in scope from an individual cell, to a specific organ, to the overall human body. This resource is freely available under a Creative Commons AttributionNonCommercial 4.0 International License.

References (36)

  1. Romero,P., Wagg,J., Green,M.L. et al. (2005) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol., 6, R2.
  2. Agren,R., Bordel,S., Mardinoglu,A. et al. (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol., 8, e1002518.
  3. Bordbar,A., Feist,A.M., Usaite-Black,R. et al. (2011) A multi-tis- sue type genome-scale metabolic network for analysis of whole- body systems physiology. BMC Syst. Biol., 5, 180.
  4. Seaver,S.M.D., Henry,C.S. and Hanson,A.D. (2012) Frontiers in metabolic reconstruction and modeling of plant genomes. J. Exp. Bot., 63, 2247-2258.
  5. Mardinoglu,A., Gatto,F. and Nielsen,J. (2013) Genome-scale modeling of human metabolism-a systems biology approach. Biotechnol. J., 8, 985-996.
  6. Thiele,I., Swainston,N., Fleming,R.M.T. et al. (2013) A commu- nity-driven global reconstruction of human metabolism. Nat. Biotechnol., 31, 419-425.
  7. Duarte,N.C., Becker,S.A., Jamshidi,N. et al. (2007) Global re- construction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. U. S. A., 104, 1777- 1782.
  8. Ma,H., Sorokin,A., Mazein,A. et al. (2007) The Edinburgh human metabolic network reconstruction and its functional ana- lysis. Mol. Syst. Biol., 3, 135.
  9. Romero,P., Wagg,J., Green,M.L. et al. (2005) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol., 6, R2.
  10. Mardinoglu,A., Agren,R., Kampf,C. et al. (2014) Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. commun., 5, 3083.
  11. Jerby,L., Shlomi,T. and Ruppin,E. (2010) Computational recon- struction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol., 6, 401.
  12. Wang,Y., Eddy,J.A. and Price,N.D. (2012) Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol., 6, 153.
  13. Butcher,E.C., Berg,E.L. and Kunkel,E.J. (2004) Systems biology in drug discovery. Nature Biotechnol., 22, 1253-1259.
  14. Mardinoglu,A., Agren,R., Kampf,C. et al. (2013) Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol., 9, 649.
  15. Gatto,F., Nookaew,I. and Nielsen,J. (2014) Chromosome 3p loss of heterozygosity is associated with a unique metabolic net- work in clear cell renal carcinoma. Proc. Natl Acad. Sci. U. S. A., 111, 1-10.
  16. Rolfsson,O., Palsson,B.O. and Thiele,I. (2011) The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions. BMC Syst. Biol., 5, 155.
  17. Kanehisa,M., Goto S., Sato,Y. et al. (2012) KEGG for integra- tion and interpretation of large-scale molecular data sets. Nucleic Acids Res., 40, D109-D114.
  18. Schomburg,I., Chang,A., Placzek,S. et al. (2013) BRENDA in 2013: integrated reactions, kinetic data, en- zyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res., 41, D764-D772.
  19. Wishart,D.S., Tzur,D., Knox,C. et al. (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res., 35, D521- D526.
  20. Hastings,J., de Matos,P., Dekker,A. et al. (2013) The ChEBI reference database and ontology for biologically relevant chemis- try: enhancements for 2013. Nucleic Acids Res., 41, D456- D463.
  21. Sud,M., Fahy,E., Cotter,D. et al. (2007) LMSD: LIPID MAPS structure database. Nucleic Acids Res., 35, D527-D532.
  22. Bolton,E., Wang,Y., Thiessen,P. et al. (2008) PubChem: inte- grated platform of small molecules and biological activities. Annu. Rep. Comput. Chem., 4, 217-241.
  23. Flicek,P., Ahmed,I., Amode,M.R. et al. (2013) Ensembl 2013. Nucleic Acids Res., 41, D48-D55.
  24. UniProt,C. (2013) Update on activities at the universal protein resource (UniProt) in 2013. Nucleic Acids Res., 41, D43-D47.
  25. Gille,C., Bolling,C., Hoppe,A. et al. (2010) HepatoNet1: a comprehensive metabolic reconstruction of the human hep- atocyte for the analysis of liver physiology. Mol. Syst. Biol., 6, 411.
  26. Uhlen,M., Oksvold,P., Fagerberg,L. et al. (2010) Towards a knowledge-based human protein atlas. Nat. Biotechnol., 28, 1248-1250.
  27. Pitka ¨nen,E., Jouhten,P., Hou,J. et al. (2014) Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species. PLoS Comput. Biol., 10, e1003465.
  28. Chandrasekaran,S. and Price,N.D. (2010) Probabilistic integra- tive modeling of genome-scale metabolic and regulatory net- works in Escherichia coli and Mycobacterium tuberculosis. Proc. Natl Acad. Sci. U. S. A., 107, 17845-17850.
  29. Pornputtapong,N., Wanichthanarak,K., Nilsson,A. et al. (2014) A dedicated database system for handling multi-level data in sys- tems biology. Source Code Biol. Med., 9, 17.
  30. Heller,S., McNaught,A., Stein,S. et al. (2013) InChI- the worldwide chemical structure identifier standard. J. Cheminform., 5, 7.
  31. Juty,N., Le Nove `re,N. and Laibe,C. (2012) Identifiers.org and MIRIAM Registry: community resources to provide persistent identification. Nucleic Acids Res., 40, D580- D586.
  32. Shoaie,S., Karlsson,F., Mardinoglu,A. et al. (2013) Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep., 3, 2532.
  33. Birney,E. and Clamp,M. (2004) Biological database design and implementation. Brief. Bioinform., 5, 31-38.
  34. Croft,D., Mundo,A.F., Haw,R. et al. (2014) The Reactome path- way knowledgebase. Nucleic Acids Res., 42, D472-D477.
  35. Kelder,T., van Iersel,M.P., Hanspers,K. et al. (2012) WikiPathways: building research communities on biological pathways. Nucleic Acids Res., 40, D1301-D1307.
  36. Mi,H., Muruganujan,A. and Thomas,P.D. (2013) PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res., 41, D377-D386.