Academia.eduAcademia.edu

Outline

Invited Review Two-dimensional packing problems: A survey

2002, European Journal of Operational Research

Abstract

We consider problems requiring to allocate a set of rectangular items to larger rectangular standardized units by minimizing the waste. In two-dimensional bin packing problems these units are finite rectangles, and the objective is to pack all the items into the minimum number of units, while in two-dimensional strip packing problems there is a single standardized unit of given width,

References (54)

  1. E. Aarts, J.K. Lenstra (Eds.), Local Search in Combina- torial Optimization, Wiley, Chichester, 1997.
  2. B.S. Baker, D.J. Brown, H.P. Katseff, A 5/4 algorithm for two-dimensional packing, Journal of Algorithms 2 (1981) 348-368.
  3. B.S. Baker, E.G. Coffman Jr., R.L. Rivest, Orthogonal packing in two dimensions, SIAM Journal on Computing 9 (1980) 846-855.
  4. J.E. Beasley, An exact two-dimensional non-guillotine cutting tree search procedure, Operational Research 33 (1985) 49-64.
  5. J.O. Berkey, P.Y. Wang, Two dimensional finite bin packing algorithms, Journal of the Operational Research Society 38 (1987) 423-429.
  6. D.J. Brown, An improved BL lower bound, Information Processing Letters 11 (1980) 37-39.
  7. B. Chazelle, The bottom-left bin packing heuristic: An efficient implementation, IEEE Transactions on Comput- ers 32 (1983) 697-707.
  8. C.S. Chen, S.M. Lee, Q.S. Shen, A analytical model for the container loading problem, European Journal of Opera- tional Research 80 (1995) 68-76.
  9. F.K.R. Chung, M.R. Garey, D.S. Johnson, On packing two-dimensional bins, SIAM Journal of Algebraic and Discrete Methods 3 (1982) 66-76.
  10. E.G. Coffman Jr., M.R. Garey, D.S. Johnson, R.E. Tarjan, Performance bounds for level-oriented two-dimensional packing algorithms, SIAM Journal on Computing 9 (1980) 801-826.
  11. E.G. Coffman Jr., G.S. Lueker, Probabilistic Analysis of Packing and Partitioning Algorithms, Wiley, Chichester, 1992.
  12. E.G. Coffman Jr., P.W. Shor, Average-case analysis of cutting and packing in two dimensions, European Journal of Operational Research 44 (1990) 134-144.
  13. J. Csirik, G. Woeginger, On-line packing and covering problems, in: Online algorithms, Springer Lecture Notes in Computer Science, vol. 1442, 1996, pp. 147-177.
  14. M. Dell'Amico, S. Martello, Optimal scheduling of tasks on identical parallel processors, ORSA Journal on Com- puting 7 (1995) 191-200.
  15. K. Dowsland, Some experiments with simulated annealing techniques for packing problems, European Journal of Operational Research 68 (1993) 389-399.
  16. K.A. Dowsland, W.B. Dowsland, Packing problems, European Journal of Operational Research 56 (1992) 2-14.
  17. H. Dyckhoff, U. Finke, Cutting and Packing in Production and Distribution, Physica Verlag, Heidelberg, 1992.
  18. H. Dyckhoff, G. Scheithauer, J. Terno, Cutting and packing (C&P), in: M. Dell'Amico, F. Maffioli, S. Martello (Eds.), Annotated Bibliographies in Combinatorial Opti- mization, Wiley, Chichester, 1997, pp. 393-413.
  19. O. Faerø, D. Pisinger, M. Zachariasen, Guided local search for the three-dimensional bin packing problem, Technical paper, DIKU, University of Copenhagen, 1999.
  20. S.P. Fekete, J. Schepers, On more-dimensional packing I: Modeling, Technical paper ZPR97-288, Mathematisches Institut, Universit€ a at zu K€ o oln, 1997.
  21. S.P. Fekete, J. Schepers, On more-dimensional packing II: Bounds, Technical paper ZPR97-289, Mathematisches Institut, Universit€ a at zu K€ o oln, 1997.
  22. S.P. Fekete, J. Schepers, On more-dimensional packing III: Exact algorithms, Technical paper ZPR97-290, Mathemat- isches Institut, Universit€ a at zu K€ o oln, 1997.
  23. S.P. Fekete, J. Schepers, New classes of lower bounds for bin packing problems, in: Integer Programming and Combinatorial Optimization (IPCO 98), Springer Lecture Notes in Computer Science, vol. 1412, 1998, pp. 257-270.
  24. W. Fernandez de la Vega, G.S. Lueker, Bin packing can be solved within 1 þ in linear time, Combinatorica 1 (1981) 349-355.
  25. W. Fernandez de la Vega, V. Zissimopoulos, An approx- imation scheme for strip-packing of rectangles with bounded dimensions, Technical paper, LRI, Universit e e de Paris Sud, Orsay,1991.
  26. J.B. Frenk, G.G. Galambos, Hybrid next-fit algorithm for the two-dimensional rectangle bin-packing problem, Com- puting 39 (1987) 201-217.
  27. P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting stock problem, Operations Re- search 9 (1961) 849-859.
  28. P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting stock problem -part II, Opera- tions Research 11 (1963) 863-888.
  29. P.C. Gilmore, R.E. Gomory, Multistage cutting problems of two and more dimensions, Operations Research 13 (1965) 94-119.
  30. F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, Boston, 1997.
  31. I. Golan, Performance bounds for orthogonal oriented two-dimensional packing algorithms, SIAM Journal on Computing 10 (1981) 571-582.
  32. E. Hadjiconstantinou, N. Christofides, An exact algorithm for general, orthogonal, two-dimensional knapsack prob- lems, European Journal of Operational Research 83 (1995) 39-56.
  33. E. Hadjiconstantinou, N. Christofides, An exact algorithm for the orthogonal, 2-D cutting problems using guillotine cuts, European Journal of Operational Research 83 (1995) 21-38.
  34. S. Høyland, Bin-packing in 1.5 dimension, in: Proceedings of the Scandinavian Workshop on Algorithm Theory, Springer Lecture Notes in Computer Science, vol. 318, 1988, pp. 129-137.
  35. S. Jacobs, On genetic algorithms for the packing of polygons, European Journal of Operational Research 88 (1996) 165-181.
  36. D.S. Johnson, Near-optimal bin packing algorithms, Ph.D. Thesis, MIT, Cambridge, MA, 1973.
  37. N. Karmarkar, R.M. Karp, An efficient approximation scheme for the one-dimensional bin-packing problem, in: Proceedings of the 23rd Annual IEEE Symposium on Found. Comput. Sci., 1982, pp. 312-320.
  38. C. Kenyon, E. R e emila, A near-optimal solution to a two- dimensional cutting stock problem, Mathematics of Oper- ations Research 25 (2000) 645-656.
  39. A. Lodi, S. Martello, D. Vigo, Neighborhood search algorithm for the guillotine non-oriented two-dimen- sional bin packing problem, in: S. Voss, S. Martello, I.H. Osman, C. Roucairol (Eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimiza- tion, Kluwer Academic Publishers, Boston, 1998, pp. 125- 139.
  40. A. Lodi, S. Martello, D. Vigo, Approximation algorithms for the oriented two-dimensional bin packing problem, European Journal of Operational Research 112 (1999) 158-166.
  41. A. Lodi, S. Martello, D. Vigo, Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems, INFORMS Journal on Computing 11 (1999) 345-357.
  42. A. Lodi, S. Martello, D. Vigo, Recent advances on two- dimensional bin packing problems, Discrete Applied Mathematics 123/124 (2002) 373-380.
  43. A. Lodi, S. Martello, D. Vigo, Heuristic algorithms for the three-dimensional bin packing problem, European Journal of Operational Research, this issue.
  44. A. Lodi, S. Martello, D. Vigo, Models and bounds for two- dimensional level packing problems, Journal of Combina- torial Optimization, to appear.
  45. G.S. Lueker, Bin packing with items uniformly distrib- uted over intervals [a,b], in: Proceedings of the 24th Annual Symposium on Found. Comp. Sci., 1983, pp. 289- 297.
  46. S. Martello, M. Monaci, D. Vigo, An exact approach to the strip packing problem, Technical paper OR/00/18, Dipartimento di Elettronica, Informatica e Sistemistica, Universit a a di Bologna, 2000.
  47. S. Martello, D. Pisinger, D. Vigo, The three-dimensional bin packing problem, Operations Research 48 (2000) 256- 267.
  48. S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implementations, Wiley, Chichester, 1990.
  49. S. Martello, D. Vigo, Exact solution of the two-dimen- sional finite bin packing problem, Management Science 44 (1998) 388-399.
  50. G. Scheithauer, Equivalence and dominance for problems of optimal packing of rectangles, Ricerca Operativa 83 (1997) 3-34.
  51. I. Schiermeyer, Reverse fit: A 2-optimal algorithm for packing rectangles, in: Proceedings of the 2nd Eur. Symposium Algorithms (ESA), 1994, pp. 290-299.
  52. D. Sleator, A 2.5 times optimal algorithm for packing in two dimensions, Information Processing Letters 10 (1980) 37-40.
  53. A. Steinberg, A strip-packing algorithm with absolute performance bound 2, SIAM Journal on Computing 26 (1997) 401-409.
  54. C. Voudouris, E. Tsang, Guided local search and its application to the traveling salesman problem, European Journal of Operational Research 113 (1999) 469-499.