Abstract
We describe the system AProVE, an automated prover to verify (innermost) termination of term rewrite systems (TRSs). For this system, we have developed and implemented efficient algorithms based on classical simplification orders, dependency pairs, and the size-change principle. In particular, it contains many new improvements of the dependency pair approach that make automated termination proving more powerful and efficient. In AProVE, termination proofs can be performed with a user-friendly graphical interface and the system is currently among the most powerful termination provers available.
References (30)
- T. Arts. System description: The dependency pair method. In Proc. 11th RTA, LNCS 1833, pages 261-264, 2000.
- T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The- oretical Computer Science, 236:133-178, 2000.
- T. Arts and J. Giesl. A collection of examples for termination of term rewriting using dependency pairs. Technical Report AIB-2001-09 3 , RWTH Aachen, 2001.
- C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path orderings. In Proc. 17th CADE, LNAI 1831, pages 346-364, 2000.
- E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME. http://cime.lri.fr.
- N. Dershowitz. Termination of rewriting. J. Symb. Comp., 3:69-116, 1987.
- N. Dershowitz. 33 examples of termination. In Proc. French Spring School of Theoretical Computer Science, LNCS 909, pages 16-26, 1995.
- N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general frame- work for automatic termination analysis of logic programs. Applicable Algebra in Engineering, Communication and Computing, 12(1,2):117-156, 2001.
- J. Dick, J. Kalmus, and U. Martin. Automating the Knuth-Bendix ordering. Acta Informatica, 28:95-119, 1990.
- O. Fissore, I. Gnaedig, and H. Kirchner. Cariboo: An induction based proof tool for termination with strategies. In Proc. 4th PPDP, pages 62-73. ACM, 2002.
- J. Giesl. Generating polynomial orderings for termination proofs. In Proc. 6th RTA, LNCS 914, pages 426-431, 1995.
- J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appl. Algebra in Engineering, Communication and Computing, 12(1,2):39-72, 2001.
- J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using dependency pairs. Journal of Symbolic Computation, 34(1):21-58, 2002.
- J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Improving dependency pairs. In Proc. 10th LPAR, LNAI 2850, pages 165-179, 2003.
- J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing dependency pairs. Technical Report AIB-2003-08 3 , RWTH Aachen, Germany, 2003.
- J. Giesl and H. Zantema. Liveness in rewriting. In Proc. 14th RTA, LNCS 2706, pages 321-336, 2003.
- N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In Proc. 19th CADE, LNAI 2741, 2003.
- N. Hirokawa and A. Middeldorp. Tsukuba termination tool. In Proc. 14th RTA, LNCS 2706, pages 311-320, 2003.
- S. Kamin and J. J. Lévy. Two generalizations of the recursive path ordering. Unpublished Manuscript, University of Illinois, IL, USA, 1980.
- D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor, Comp. Problems in Abstract Algebra, pages 263-297. Pergamon, 1970.
- K. Korovin and A. Voronkov. Verifying orientability of rewrite rules using the Knuth-Bendix order. In Proc. 10th RTA, LNCS 2051, pages 137-153, 2001.
- D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.
- C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program termination. In Proc. POPL '01, pages 81-92, 2001.
- E. Ohlebusch. Termination of logic programs: Transformational approaches revis- ited. Appl. Algebra in Engineering, Comm. and Comp., 12(1,2):73-116, 2001.
- E. Ohlebusch, C. Claves, and C. Marché. TALP: A tool for the termination analysis of logic programs. In Proc. 11th RTA, LNCS 1833, pages 270-273, 2000.
- J. Steinbach. Automatic termination proofs with transformation orderings. In Proc. 6th RTA, LNCS 914, pages 11-25, 1995. Full version appeared as Technical Report SR-92-23, Universität Kaiserslautern, Germany.
- R. Thiemann and J. Giesl. Size-change termination for term rewriting. In Proc. 14th RTA, LNCS 2706, pages 264-278, 2003.
- R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular termination proofs using dependency pairs. In Proc. 2nd IJCAR, LNAI, 2004. To appear.
- X. Urbain. Automated incremental termination proofs for hierarchically defined term rewriting systems. In Proc. 1st IJCAR, LNAI 2083, pages 485-498, 2001.
- H. Zantema. TORPA: Termination of rewriting proved automatically. In Proc. 15th RTA, LNCS, 2004.