Academia.eduAcademia.edu

Outline

Physical dynamics of quasi-particles in nonlinear wave equations

2008, Physics Letters A

https://doi.org/10.1016/J.PHYSLETA.2007.08.038

Abstract

By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field.

References (30)

  1. J. K. Perring, T. H. R. Skyrme, A model unified field equation, Nuclear Physics 31 (1962) 550-555.
  2. J. Rubinstein, Sine-Gordon equation, J. Math. Phys. 11 (1970) 258-266.
  3. N. J. Zabusky, M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965) 240-243.
  4. A. T. Filippov, The Versatile Soliton, Birkhäuser, Boston, 2000.
  5. T. Dauxois, M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2006.
  6. R. K. Bullough, P. J. Caudrey, The soliton and its history, in: R. K. Bullough, P. J. Caudrey (Eds.), Solitons, Vol. 17 of Topics in Current Physics, Springer-Verlag, Berlin, 1980, pp. 1-64.
  7. G. A. Maugin, C. I. Christov, Nonlinear duality between elastic waves and quasi-particles, in: C. I. Christov, A. Guran (Eds.), Selected Topics in Nonlinear Wave Mechanics, Birkhäuser, Boston, 2002, pp. 117-152.
  8. D. J. Kaup, A. C. Newell, Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory, Proc. R. Soc. Lond. A 361 (1978) 413-446.
  9. G. Bowtell, A. E. G. Stuart, Interacting sine-Gordon solitons and classical particles: A dynamic equivalence, Phys. Rev. D 15 (1977) 3580-3591.
  10. R. Boesch, P. Stancioff, C. R. Willis, Hamiltonian equations for multiple collective-variable theories of nonlinear Klein-Gordon equations: A projection-operator approach, Phys. Rev. B 38 (1988) 6713-6735.
  11. T. Sugiyama, Kink-antikink collisions in the two-dimensional φ 4 model, Prog. Theor. Phys. 61 (1979) 1550-1563.
  12. D. K. Campbell, J. F. Schonfeld, C. A. Wingate, Resonance structure in kink-antikink interactions in φ 4 theory, Physica 9D (1983) 1-32.
  13. V. I. Karpman, V. V. Solov'ev, A perturbation approach to the two-soliton systems, Physica 3D (1981) 487-502.
  14. C. D. Ferguson, C. R. Willis, One-and two-collective variable descriptions of two interacting sine-Gordon kinks, Physica D 119 (1998) 283-300.
  15. D. J. Kaup, B. A. Malomed, Variational principle for the Zakharov-Shabat equations, Physica D 84 (1995) 319-328.
  16. B. Malomed, M. I. Weinstein, Soliton dynamics in the discrete nonlinear Schrödinger equation, Phys. Lett. A 220 (1996) 91- 96.
  17. D. J. Kaup, Variational solutions for the discrete nonlinear Schrödinger equation, Math. Comput. Simul. 69 (2005) 322- 333.
  18. M. J. Rice, Physical dynamics of solitons, Phys. Rev. B 28 (1983) 3587-3589.
  19. S. Y. Lou, H.-C. Hu, X.-Y. Tang, Interactions among periodic waves and solitary waves of the (N + 1)-dimensional sine- Gordon field, Phys. Rev. E 71 (2005) 036604.
  20. M. B. Fogel, S. E. Trullinger, A. R. Bishop, J. A. Krumhansl, Dynamics of sine-Gordon solitons in the presence of perturbations, Phys. Rev. B 15 (1977) 1578-1592.
  21. G. Reinisch, J. C. Fernandez, Specific sine-Gordon solution dynamics in the presence of external driving forces, Phys. Rev. B. 24 (1981) 835-844.
  22. P. M. Jordan, An analytical study of Kuznetsov's equation: diffusive solitons, shock formation, and solution bifurcation, Phys. Lett. A 326 (2004) 77-84.
  23. P. M. Jordan, Finite-amplitude acoustic traveling waves in a fluid that saturates a porous medium: Acceleration wave formation, Phys. Lett. A 355 (2006) 216-221.
  24. C. I. Christov, M. G. Velarde, Dissipative solitons, Physica D 86 (1995) 323-347.
  25. J. Jaisaardsuetrong, B. Straughan, Thermal waves in a rigid heat conductor, Phys. Lett. A 366 (2007) 433-436.
  26. D. J. Bergman, E. Ben-Jacob, Y. Imry, K. Maki, Sine-Gordon solitons: Particles obeying relativistic dynamics, Phys. Rev. A 27 (1983) 3345-3348.
  27. D. J. Kaup, Comment on "Specific sine-Gordon dynamics in the presence of external driving forces", Phys. Rev. B 29 (1984) 1072-1074.
  28. D. J. Kaup, T. K. Vogel, Quantitative measurement of variational approximations, Phys. Lett. A 362 (2007) 289-297.
  29. G. W. Milton, J. R. Willis, On modifications of Newton's second law and linear continuum elastodynamics, Proc. R. Soc. A 463 (2007) 855-880.
  30. D. Kleppner, R. Kolenkow, An Introduction to Mechanics, McGraw-Hill, New York, 1973.