Physical dynamics of quasi-particles in nonlinear wave equations
2008, Physics Letters A
https://doi.org/10.1016/J.PHYSLETA.2007.08.038Abstract
By treating the centers of solitons as point particles and studying their discrete dynamics, we demonstrate a new approach to the quantization of the soliton solutions of the sine-Gordon equation, one of the first model nonlinear field equations. In particular, we show that a linear superposition of the non-interacting shapes of two solitons offers a qualitative (and to a good approximation quantitative) description of the true two-soliton solution, provided that the trajectories of the centers of the superimposed solitons are considered unknown. Via variational calculus, we establish that the dynamics of the quasi-particles obey a pseudo-Newtonian law, which includes cross-mass terms. The successful identification of the governing equations of the (discrete) quasi-particles from the (continuous) field equation shows that the proposed approach provides a basis for the passage from the continuous to a discrete description of the field.
References (30)
- J. K. Perring, T. H. R. Skyrme, A model unified field equation, Nuclear Physics 31 (1962) 550-555.
- J. Rubinstein, Sine-Gordon equation, J. Math. Phys. 11 (1970) 258-266.
- N. J. Zabusky, M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15 (1965) 240-243.
- A. T. Filippov, The Versatile Soliton, Birkhäuser, Boston, 2000.
- T. Dauxois, M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2006.
- R. K. Bullough, P. J. Caudrey, The soliton and its history, in: R. K. Bullough, P. J. Caudrey (Eds.), Solitons, Vol. 17 of Topics in Current Physics, Springer-Verlag, Berlin, 1980, pp. 1-64.
- G. A. Maugin, C. I. Christov, Nonlinear duality between elastic waves and quasi-particles, in: C. I. Christov, A. Guran (Eds.), Selected Topics in Nonlinear Wave Mechanics, Birkhäuser, Boston, 2002, pp. 117-152.
- D. J. Kaup, A. C. Newell, Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory, Proc. R. Soc. Lond. A 361 (1978) 413-446.
- G. Bowtell, A. E. G. Stuart, Interacting sine-Gordon solitons and classical particles: A dynamic equivalence, Phys. Rev. D 15 (1977) 3580-3591.
- R. Boesch, P. Stancioff, C. R. Willis, Hamiltonian equations for multiple collective-variable theories of nonlinear Klein-Gordon equations: A projection-operator approach, Phys. Rev. B 38 (1988) 6713-6735.
- T. Sugiyama, Kink-antikink collisions in the two-dimensional φ 4 model, Prog. Theor. Phys. 61 (1979) 1550-1563.
- D. K. Campbell, J. F. Schonfeld, C. A. Wingate, Resonance structure in kink-antikink interactions in φ 4 theory, Physica 9D (1983) 1-32.
- V. I. Karpman, V. V. Solov'ev, A perturbation approach to the two-soliton systems, Physica 3D (1981) 487-502.
- C. D. Ferguson, C. R. Willis, One-and two-collective variable descriptions of two interacting sine-Gordon kinks, Physica D 119 (1998) 283-300.
- D. J. Kaup, B. A. Malomed, Variational principle for the Zakharov-Shabat equations, Physica D 84 (1995) 319-328.
- B. Malomed, M. I. Weinstein, Soliton dynamics in the discrete nonlinear Schrödinger equation, Phys. Lett. A 220 (1996) 91- 96.
- D. J. Kaup, Variational solutions for the discrete nonlinear Schrödinger equation, Math. Comput. Simul. 69 (2005) 322- 333.
- M. J. Rice, Physical dynamics of solitons, Phys. Rev. B 28 (1983) 3587-3589.
- S. Y. Lou, H.-C. Hu, X.-Y. Tang, Interactions among periodic waves and solitary waves of the (N + 1)-dimensional sine- Gordon field, Phys. Rev. E 71 (2005) 036604.
- M. B. Fogel, S. E. Trullinger, A. R. Bishop, J. A. Krumhansl, Dynamics of sine-Gordon solitons in the presence of perturbations, Phys. Rev. B 15 (1977) 1578-1592.
- G. Reinisch, J. C. Fernandez, Specific sine-Gordon solution dynamics in the presence of external driving forces, Phys. Rev. B. 24 (1981) 835-844.
- P. M. Jordan, An analytical study of Kuznetsov's equation: diffusive solitons, shock formation, and solution bifurcation, Phys. Lett. A 326 (2004) 77-84.
- P. M. Jordan, Finite-amplitude acoustic traveling waves in a fluid that saturates a porous medium: Acceleration wave formation, Phys. Lett. A 355 (2006) 216-221.
- C. I. Christov, M. G. Velarde, Dissipative solitons, Physica D 86 (1995) 323-347.
- J. Jaisaardsuetrong, B. Straughan, Thermal waves in a rigid heat conductor, Phys. Lett. A 366 (2007) 433-436.
- D. J. Bergman, E. Ben-Jacob, Y. Imry, K. Maki, Sine-Gordon solitons: Particles obeying relativistic dynamics, Phys. Rev. A 27 (1983) 3345-3348.
- D. J. Kaup, Comment on "Specific sine-Gordon dynamics in the presence of external driving forces", Phys. Rev. B 29 (1984) 1072-1074.
- D. J. Kaup, T. K. Vogel, Quantitative measurement of variational approximations, Phys. Lett. A 362 (2007) 289-297.
- G. W. Milton, J. R. Willis, On modifications of Newton's second law and linear continuum elastodynamics, Proc. R. Soc. A 463 (2007) 855-880.
- D. Kleppner, R. Kolenkow, An Introduction to Mechanics, McGraw-Hill, New York, 1973.