Academia.eduAcademia.edu

Outline

Aquatic innovation: Genome editing routes to designer fish

2025

https://doi.org/10.33545/26174693.2025.V9.I10A.5820

Abstract

Ornamental fish constitute a significant sector of the global aquaculture industry, contributing substantial economic value through the aquarium trade, eco-tourism, and export markets. Beyond their aesthetic appeal, they serve as important model organisms in biomedical and developmental research, while also supporting livelihoods in many developing countries. The demand for novel varieties with enhanced colouration, unique morphological traits, and improved resilience to environmental stress has increased markedly in recent years. Conventional selective breeding, although effective, is timeconsuming and limited in its precision. Genome editing technologies, particularly the CRISPR-Cas9 system, have emerged as transformative tools for accelerating trait development in ornamental fishes. CRISPR-Cas9 offers high precision, efficiency, and cost-effectiveness compared to earlier platforms such as transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs). Its application enables targeted modifications of genes influencing pigmentation (e.g., mitfa, slc24a5, kit), fin morphology, growth patterns, and stress tolerance. In addition to generating novel phenotypes of commercial interest, genome editing can improve disease resistance, enhance adaptation to captive environments, and produce sterile strains to mitigate risks of genetic pollution from accidental releases. This review comprises recent advancements in the application of genome editing in ornamental fish.

References (61)

  1. Ahmed FE, Setlow RB. Ultraviolet radiation-induced DNA damage and its photorepair in the skin of the platyfish Xiphophorus. Cancer Res. 1993;53(10):2249- 2255.
  2. Bae S, Park J, Kim JS. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014;30(10):1473-1475.
  3. Bagnara JT, Matsumoto J. Comparative anatomy and physiology of pigment cells in nonmammalian tissues. In: Nordlund JJ, Boissy RE, Hearing VJ, King RA, Oetting WS, Ortonne JP, editors. The pigmentary system: physiology and pathophysiology. 2nd ed. Malden (MA): Blackwell Publishing; 2006. p. 11-59.
  4. Baker BI. The role of melanin-concentrating hormone in color change. Ann N Y Acad Sci. 1993;680:279-289.
  5. Beirl AJ, Linbo TH, Cobb MJ, Cooper CD. oca2 regulation of chromatophore differentiation and number is cell type specific in zebrafish. Pigment Cell Melanoma Res. 2014;27(2):178-189.
  6. Bonaventure J, Domingues MJ, Larue L. Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res. 2013;26(3):316-325.
  7. Borovansky J, Riley PA. Melanins and melanosomes: biosynthesis, structure, physiological and pathological functions. Weinheim: Wiley-VCH; 2011.
  8. Cánepa MM, Pandolfi M, Maggese MC, Vissio PG. Involvement of somatolactin in background adaptation of the cichlid fish Cichlasoma dimerus. J Exp Zool A Comp Exp Biol. 2006;305(5):410-419.
  9. Fang J, Chen T, Pan Q, Wang Q. Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9. J Exp Zool B Mol Dev Evol. 2018;330(4):242-246.
  10. Fujii R. Coloration and chromatophores. In: Evans DH, editor. The physiology of fishes. Boca Raton (FL): CRC Press; 1993. p. 535-562.
  11. Fujii R. The regulation of motile activity in fish chromatophores. Pigment Cell Res. 2000;13(5):300- 319.
  12. Fukunishi Y, Masuda R, Seikai T, Nakamura M, Tagawa M, Yamashita Y. Comparison of UV-B tolerance between wild-type and albino Japanese flounder Paralichthys olivaceus juveniles. Aquac Sci. 2017;65(2):149-152.
  13. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397-405.
  14. Gong Z, Wan H, Tay TL, Wang H, Chen M, Yan T. Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle. Biochem Biophys Res Commun. 2003;308(1):58-63.
  15. Green JA, Baker BI, Kawauchi H. The effect of rearing rainbow trout on black or white backgrounds on their secretion of melanin-concentrating hormone and their sensitivity to stress. J Endocrinol. 1991;128(2):267-274.
  16. Häkkinen J, Vehniäinen E, Ylönen O, Heikkilä J, Soimasuo M, Kaurola J, et al. The effects of increasing UV-B radiation on pigmentation, growth and survival of coregonid embryos and larvae. Environ Biol Fishes. 2002;64(4):451-459.
  17. Höglund E, Balm PHM, Winberg S. Skin darkening, a potential social signal in subordinate arctic charr (Salvelinus alpinus): the regulatory role of brain monoamines and pro-opiomelanocortin-derived peptides. J Exp Biol. 2000;203(Pt 11):1711-1721.
  18. Howard RD, Rohrer K, Liu Y, Muir WM. Mate competition and evolutionary outcomes in genetically modified zebrafish (Danio rerio). Evolution. 2015;69(5):1143-1157.
  19. Iqbal G, Qazi D, Piyushbhai MK, Malik MA. Contribution of Genome Editing Technologies Towards Improved Nutrition and Sustainability of Aquaculture Systems. In: Subramaniam S, De M, Ramanan V, editors. Food Security, Nutrition and Sustainability Through Aquaculture Technologies. Cham: Springer Nature Switzerland; 2025. p. 1-17.
  20. Iqbal G, Ahmad Dar S, Quyoom N, Malik MA, Gul S, Ahmad Mir S. CRISPR/Cas9-Gene editing technology. World J Aquac Res Dev. 2023;3(1):1017.
  21. Iqbal G, Quyoom N, Singh LS, Ganpatbhai AVK, Bhat NM, Gul S, et al. Genome editing technology in fishes. Curr Appl Sci Technol. 2023;42:20-26.
  22. Ivics Z, Li MA, Mátés L, Boeke JD, Nagy A, Bradley A, et al. Transposon-mediated genome manipulation in vertebrates. Nat Methods. 2009;6(6):415-422.
  23. Jacobson ES. Pathogenic roles for fungal melanins. Clin Microbiol Rev. 2000;13(4):708-717.
  24. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821.
  25. Klaassen H, Wang Y, Adamski K, Rohner N, Kowalko JE. CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Dev Biol. 2018;441(2):313-318.
  26. Kollias N, Sayre RM, Zeise L, Chedekel MR. New trends in photobiology: Photoprotection by melanin. J Photochem Photobiol B. 1991;9(2):135-160.
  27. Komarova Y, Peloquin J, Borisy G. Components of a microinjection system. Cold Spring Harb Protoc. 2011;(8):935-939.
  28. Kottler VA, Künstner A, Koch I, Flötenmeyer M, Langenecker T, Hoffmann M, et al. Adenylate cyclase 5 is required for melanophore and male pattern development in the guppy (Poecilia reticulata). Pigment Cell Melanoma Res. 2015;28(5):545-558.
  29. Li H, Wang X, Zhang R, Liu L, Zhu H. Generation of golden goldfish Carassius auratus via tyrosinase gene targeting by CRISPR/Cas9. Aquaculture. 2024;583:740594. ~ 28 ~ International Journal of Advanced Biochemistry Research https://www.biochemjournal.com
  30. Li S, Li X, Xue W, Zhang L, Yang LZ, Cao SM, et al. Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat Methods. 2021;18(1):51- 59.
  31. Lian H, Hu W, Huang R, Du F, Liao L, Zhu Z, et al. Transgenic common carp do not have the ability to expand populations. PLoS One. 2013;8(6):e65506.
  32. Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007;445(7130):843-850.
  33. Liu L, Yin M, Wang M, Wang Y. Phage AcrIIA2 DNA mimicry: structural basis of the CRISPR and anti- CRISPR arms race. Mol Cell. 2019;73(3):611-620.
  34. Lowe C, Goodman-Lowe G. Suntanning in hammerhead sharks. Nature. 1996;383(6602):677.
  35. Luo JJ, Bian WP, Liu Y, Huang HY, Yin Q, Yang XJ, et al. CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy. FASEB J. 2018;32(9):5132-5142.
  36. Magalhães ALB, Brito MFG, Silva LGM. The fluorescent introduction has begun in the southern hemisphere: presence and life-history strategies of the transgenic zebrafish Danio rerio (Cypriniformes: Danionidae) in Brazil. Stud Neotrop Fauna Environ. 2024;59(1):1-13.
  37. Marks MS, Seabra MC. The melanosome: membrane dynamics in black and white. Nat Rev Mol Cell Biol. 2001;2(10):738-748.
  38. McGraw KJ. The antioxidant function of many animal pigments: are there consistent health benefits of sexually selected colourants? Anim Behav. 2005;69(4):757-764.
  39. Meredith P, Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res. 2006;19(6):572-594.
  40. Mohanta R, Jayasankar P, Das Mahapatra K, Saha JN, Barman HK. Molecular cloning, characterization and functional assessment of the myosin light polypeptide chain 2 (mylz2) promoter of farmed carp, Labeo rohita. Transgenic Res. 2014;23(4):601-607.
  41. Moreau DTR, Gamperl AK, Fletcher GL, Fleming IA. Delayed phenotypic expression of growth hormone transgenesis during early ontogeny in Atlantic salmon (Salmo salar)? PLoS One. 2014;9(4):e95853.
  42. Nagai M, Oshima N, Fujii R. A comparative study of melanin-concentrating hormone (MCH) action on teleost melanophores. Biol Bull. 1986;171(2):360-370.
  43. Nery LEM, de Lauro Castrucci AM. Pigment cell signalling for physiological color change. Comp Biochem Physiol A Physiol. 1997;118(4):1135-1144.
  44. Nilsson Sköld H, Aspengren S, Wallin M. Rapid color change in fish and amphibians-function, regulation, and emerging applications. Pigment Cell Melanoma Res. 2013;26(1):29-38.
  45. Nishidate M, Nakatani Y, Kudo A, Kawakami A. Identification of novel markers expressed during fin regeneration by microarray analysis in medaka fish. Dev Dyn. 2007;236(9):2685-2693.
  46. Pan X, Zhan H, Gong Z. Ornamental expression of red fluorescent protein in transgenic founders of white skirt tetra (Gymnocorymbus ternetzi). Mar Biotechnol (NY). 2008;10(5):497-501.
  47. Raposo G, Marks MS. Melanosomes-dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol. 2007;8(10):786-797.
  48. Rudh A, Qvarnström A. Adaptive colouration in amphibians. In: Irschick DJ, Stevens M, editors. Animal colouration: production, evolution, function and applications. Cambridge: Cambridge University Press; 2013. p. 190-210.
  49. Schartl M, Shen Y, Maurus K, Walter R, Tomlinson C, Wilson RK, et al. Whole body melanoma transcriptome response in medaka. PLoS One. 2015;10(12):e0143057.
  50. Shraborni A, Mandal SC, Parhi J. Freshwater Ornamental Fishes of India: Sustainable Management and Conservation. In: Sharma A, Kumar R, Parhi J, editors. Aquaculture and Conservation of Inland Coldwater Fishes. Singapore: Springer; 2024. p. 155- 173.
  51. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84(4):1155- 1228.
  52. Snekser JL, McRobert SP, Murphy CE, Clotfelter ED. Aggregation behavior in wildtype and transgenic zebrafish. Ethology. 2006;112(2):181-187.
  53. Su B, Shang M, Li C, Perera DA, Pinkert CA, Irwin MH, et al. Effects of transgenic sterilization constructs and their repressor compounds on hatch, developmental rate and early survival of electroporated channel catfish embryos and fry. Transgenic Res. 2015;24(2):333-352.
  54. Sugimoto M. Morphological color changes in fish: regulation of pigment cell density and morphology. Microsc Res Tech. 2002;58(6):496-503.
  55. Van Eys G, Peters PTW. Evidence for a direct role of α- MSH in morphological background adaptation of the skin in Sarotherodon mossambicus. Cell Tissue Res. 1981;217(2):361-372.
  56. Videira IFDS, Moura DFL, Magina S. Mechanisms regulating melanogenesis. An Bras Dermatol. 2013;88(1):76-83.
  57. Wu G, Sun Y, Zhu Z. Growth hormone gene transfer in common carp. Aquat Living Resour. 2003;16(5):416- 420.
  58. Yamanome T, Amano M, Takahashi A. White background reduces the occurrence of staining, activates melanin-concentrating hormone and promotes somatic growth in barfin flounder. Aquaculture. 2005;244(1-4):323-329.
  59. Yang K, Ma B, Wu Z, Wang Y, Yang S, Ling F, et al. CRISPR/CasRx: A novel antiviral approach to combat largemouth bass (Micropterus salmoides) Rhabdovirus infections. Aquaculture. 2025;599:742189.
  60. Zeng Z, Liu X, Seebah S, Gong Z. Faithful expression of living color reporter genes in transgenic medaka under two tissue-specific zebrafish promoters. Dev Dyn. 2005;234(2):387-392.
  61. Zhu Z, He L, Chen S. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758). J Appl Ichthyol. 1985;1(1):31-34.