Academia.eduAcademia.edu

Outline

Automatic Screening and Classification of Diabetic Retinopathy

2018

Abstract

Diabetic Retinopathy (DR) is a microvascular complications caused by increase of insulin in blood, leading to blindness or vision loss because of changes in blood vessels of retina. DR is highly preventable with regular screening and timely intervention of lesions which can help ophthalmologists in detecting at an early stage. The background or non-proliferative DR contains four types of lesions, i.e. microaneurysms, hemorrhages, hard exudates and soft exudates. This paper presents a novel automatic approach for detecting DR in eye fundus images by employing image processing techniques. The proposed system consists of preprocessing, feature extraction using Gray Level Co-Occurrence Matrix (GLCM), and classification is done using Support Vector Machine (SVM) and k Nearest Neighbor (kNN). The proposed system uses genetic algorithm to evaluate and test publicly available retinal image database using performance parameters such as sensitivity, specificity and accuracy. Keywords— Diabeti...

References (18)

  1. ManojKumar S. B., Manjunath R. and H. S. Sheshadri, -Feature extraction from the fundus images for the diagnosis of Diabetic Retinopathy,‖ 2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), Mandya, 2015, pp. 240-245.
  2. M. U. Akram, A. Tariq, M. A. Anjum, M. Y. Javed, -Automated Detection of Exudates in Colored Retinal Images for Diagnosis of Diabetic Retinopathy,‖ OSA Journal of Applied Optics, 2012, Vol. 51, No. 20, pp. 4858-4866.
  3. Aravind C., Ponnibala M., Vijayachitra S. -Automatic detection of microaneurysms and classification of diabetic retinopathy images using SVM technique,‖ In: IJCA Proceedings on international conference on innovations in intelligent instrumentation, optimization and electrical sciences (ICIIIOES), 2013, Vol. 11, pp. 18-22
  4. K. Ram, G. D. Joshi and J. Sivaswamy, -A Successive Clutter - Rejection -Based Approach for Early Detection of Diabetic Retinopathy,‖ IEEE Transactions on Biomedical Engineering, 2011, Vol. 58, No. 3, pp. 664-673.
  5. M. U. Akram, A. Tariq, S. A. Khan and S. A. Bazar, -Microaneurysm detection for early diagnosis of diabetic retinopathy,‖ Electronics, Computer and Computation (ICECCO), 2013 International Conference on, Ankara, 2013, pp. 21-24.
  6. Alan D. Fleming, Sam Philip, Keith A. Goatman, John A. Olson, Peter F. Sharp -Automated microaneurysm detection using local contrast normalization and local vessel detection,‖ IEEE Trans. Med. Imag., 2006, Vol. 25, No. 9, pp. 1223-1232.
  7. B. Zhang, X. Wu, J. You, Q. Li, and F. Karray, -Detection of microaneurysms using multi-scale correlation coefficients,‖ Pattern Recogn., 2010, Vol. 43, No. 6, pp. 2237-2248.
  8. Meindert Niemeijer*, Bram van Ginneken, Joes Staal, Maria S. A. Suttorp-Schulten, and Michael D. Abràmoff, -Automatic detection of red lesions in digital color fundusphotographs,‖ IEEE Trans. on Med. Img., 2005, Vol. 24, No. 5, pp. 584-592.
  9. Prakash J., Sumanthi K. -Detection and classification of microaneurysms for diabetic retinopathy,‖ Int J Eng Res Appl 2013, Vol. 4, pp. 31-36.
  10. Priya R, Aruna P, Suriya R (2013) -Image analysis technique for detecting diabetic retinopathy,‖ Int J Comput Appl, Vol. 1, pp. 34-38.
  11. C. Sinthanayothin, J. F. Boyce, T. H. Williamson, H. L. Cook, E. Mensah, S. Lal, and D. Usher. -Automated detection of diabetic retinopathy on digital fundus images,‖ Diabetic Medicine, 2002, Vol. 19, pp. 105-112.
  12. L. Gagnon, M. Lalonde, M. Beaulieu, and M. C. Boucher, -Procedure to detect anatomical structures in optical fundus images,‖ In Proc. SPIE Medical Imaging: Image Processing, 2001, pp. 1218-1225.
  13. Sopharak, A., Uyyanonvara, B., Barmanb, S., Willliamson, T. H., -Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods,‖ Comput. Med. Imaging Graph, 2008, Vol. 32, No. 8, pp. 720-727.
  14. A. Osareh, B. Shadgar, and R. Markham, -A computational intelligence-based approach for detection of exudates in diabetic retinopathy images,‖ IEEE Trans. Inf. Technol. Biomed., 2009, Vol. 13, pp. 535-545.
  15. T. Walter, J. C. Klein, P. Massin, and A. Erginay, -A contribution of image processing to the diagnosis of diabetic retinopathy detection of exudates in color fundus images of the human retina,‖ IEEE Trans. Med. Imag., 2002, Vol. 21, pp. 1236-1243.
  16. H. Yazid, H. Arof, and H. M. Isa, -Automated identification of exudates and optic disc based on inverse surface thresholding,‖ J. Med. Syst., 2012, Vol. 36, pp. 1997-2004.
  17. J. Sung, S. Y. Bang, and S. Choi, -A Bayesian network classifier and hierarchical Gabor features for handwritten numeral recognition,‖ Pattern Recogn. Lett. 27, 2006, pp. 66-75.
  18. R. C. Gonzalez and R. E. Woods, -Digital Image Processing,‖ 2 nd Edition, Prentice-Hall, 2002.