Chemical Strain Engineering of Magnetism in Oxide Thin Films
2017, Advanced Materials
https://doi.org/10.1103/PHYSREVB.99.224405Abstract
Transition-metal oxides with an ABO 3 perovskite structure exhibit strongly entangled structural and electronic degrees of freedom and thus one expects to unveil exotic phases and properties by acting on the lattice through various external stimuli. Using the Jahn-Teller active praseodymium vanadate Pr 3+ V 3+ O 3 compound as a model system, we show that PrVO 3 Néel temperature T N can be raised by 40 K with respect to the bulk when grown as thin films. Using advanced experimental techniques, this enhancement is unambiguously ascribed to a tetragonality resulting from the epitaxial compressive strain experienced by the films. First-principles simulations not only confirm experimental results, but they also reveal that the strain promotes an unprecedented orbital ordering of the V 3+ d electrons, strongly favoring antiferromagnetic interactions. These results show that an accurate control of structural aspects of oxides is the key for unveiling unexpected phases in oxides.
References (56)
- M. Sayer, P. Chen, R. Fletcher, and A. Mansingh, J. Phys. C 8, 2059 (1975).
- H. Meley, Karandeep, L. Oberson, J. de Bruijckere, D. T. L. Alexander, J.-M. Triscone, P. Ghosez, and S. Gariglio, APL Mater. 6, 046102 (2018).
- S.-P. Matsuda, S. Takeuchi, A. Soeta, T. Doi, K. Aihara, and T. Kamo, Jpn. J. Appl. Phys. 29, L1781 (1990).
- N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1990).
- P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
- J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Nature (London) 430, 758 (2004).
- D. Sando, A. Barthélémy, and M. Bibes, J. Phys.: Condens. Matter 26, 473201 (2014).
- M. Čulo, M. Basletić, E. Tafra, A. Hamzić, S. Tomić, F. Fischgrabe, V. Moshnyaga, and B. Korin-Hamzić, Thin Solid Films 631, 205 (2017).
- J. Fontcuberta, C. R. Phys. 16, 204 (2015).
- F. Yen, C. dela Cruz, B. Lorenz, E. Galstyan, Y. Y. Sun, M. Gospodinov, and C. W. Chu, J. Mater. Res. 22, 2163 (2007).
- N. Aliouane, O. Prokhnenko, R. Feyerherm, M. Mostovoy, J. Strempfer, K. Habicht, K. C. Rule, E. Dudzik, A. U. B. Wolter, A. Maljuk, and D. N. Argyriou, J. Phys.: Condens. Matter 20, 434215 (2008).
- T. Katsufuji, M. Masaki, A. Machida, M. Moritomo, K. Kato, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, K. Kitazawa, and H. Takagi, Phys. Rev. B 66, 134434 (2002).
- J. Fujioka, T. Yasue, S. Miyasaka, Y. Yamasaki, T. Arima, H. Sagayama, T. Inami, K. Ishii, and Y. Tokura, Phys. Rev. B 82, 144425 (2010).
- J. F. Mitchell, D. N. Argyriou, A. Berger, K. E. Gray, R. Osborn, and U. Welp, J. Phys. Chem. B 105, 10731 (2001).
- J. Varignon, M. Bibes, and A. Zunger, Nat. Commun. 10, 1658 (2019).
- M. H. Sage, G. R. Blake, C. Marquina, and T. T. M. Palstra, Phys. Rev. B 76, 195102 (2007).
- K. Kugel and D. Khomskii, Zh. Eksp. Teor. Fiz. 64, 1429 (1973).
- J. B. Goodenough, Magnetism and Chemical Bond Interscience (New York, John Wiley and sons 1963).
- J.-S. Zhou, J. B. Goodenough, J.-Q. Yan, and Y. Ren, Phys. Rev. Lett. 99, 156401 (2007).
- D. Bizen, K. Nakatsuka, T. Murata, H. Nakao, Y. Murakami, S. Miyasaka, and Y. Tokura, Phys. Rev. B 78, 224104 (2008).
- O. Copie, J. Varignon, H. Rotella, G. Steciuk, P. Boullay, A. Pautrat, A. David, B. Mercey, P. Ghosez, and W. Prellier, Adv. Mater. 29, 1604112 (2017).
- G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
- G. Kresse and J. Furthmiiller, Comput. Mater. Sci. 6, 15 (1996).
- S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
- J. Varignon, N. C. Bristowe, E. Bousquet, and P. Ghosez, Sci. Rep. 5, 15364 (2015).
- P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
- G. W. Watson, S. C. Parker, and G. Kresse, Phys. Rev. B 59, 8481 (1999).
- A. Biswas and Y. H. Jeong, J. Appl. Phys. 117, 195305 (2015).
- R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 49, 5828 (1994).
- O. Diéguez, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 72, 144101 (2005).
- G. Herranz, M. Basletić, O. Copie, M. Bibes, A. N. Khodan, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, A. Hamzić, and A. Barthélémy, Appl. Phys. Lett. 94, 012113 (2009).
- O. Copie, H. Rotella, P. Boullay, M. Morales, A. Pautrat, P.-E. Janolin, I. C. Infante, D. Pravathana, U. Lüders, and W. Prellier, J. Phys.: Condens. Matter 25, 492201 (2013).
- J. A. Moyer, C. Eaton, and R. Engel-Herbert, Adv. Mater. 25, 3578 (2013).
- U. Aschauer, R. Pfenninger, S. M. Selbach, T. Grande, and N. A. Spaldin, Phys. Rev. B 88, 054111 (2013).
- P. Agrawal, J. Guo, P. Yu, C. Hébert, D. Passerone, R. Erni, and M. D. Rossell, Phys. Rev. B 94, 104101 (2016).
- See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.99.224405 for details of film thickness sim- ulation, a comparative summary of TEM observations, strain effect on the weightage of soft and hard magnetic component, and derivative of MT, Pr-V interaction.
- D. Kumar, A. David, A. Fouchet, B. Domengès, and W. Prellier (unpublished).
- H. Rotella, O. Copie, A. Pautrat, P. Boullay, A. David, D. Pelloquin, C. Labbé, C. Frilay, and W. Prellier, J. Phys.: Condens. Matter 27, 095603 (2015).
- H. P. R. Frederikse and W. R. Hosler, Phys. Rev. 161, 822 (1967).
- L. D. Tung, Phys. Rev. B 72, 054414 (2005).
- F. Wang, J. Zhang, P. Yuan, Q. Yan, and P. Zhang, J. Phys.: Condens. Matter 12, 3037 (2000).
- J. Scola, P. Boullay, W. Noun, E. Popova, Y. Dumont, A. Fouchet, and N. Keller, J. Appl. Phys. 110, 043928 (2011).
- S. Miyasaka, Y. Okimoto, M. Iwama, and Y. Tokura, Phys. Rev. B 68, 100406(R) (2003).
- T. Sarkar, S. A. Ivanov, G. V. Bazuev, P. Nordblad, and R. Mathieu, J. Phys. D 48, 345003 (2015).
- T. Sakai, G. Adachi, J. Shiokawa, and T. Shinike, J. Appl. Phys. 48, 379 (1977).
- Q. Zhang, K. Singh, C. Simon, L. D. Tung, G. Balakrishnan, and V. Hardy, Phys. Rev. B 90, 024418 (2014).
- M. Reehuis, C. Ulrich, P. M. Abdala, P. Pattison, G. Khaliullin, J. Fujioka, S. Miyasaka, Y. Tokura, and B. Keimer, Phys. Rev. B 94, 104436 (2016).
- R. Aeschlimann, D. Preziosi, P. Scheiderer, M. Sing, S. Valencia, J. Santamaria, C. Luo, H. Ryll, F. Radu, R. Claessen, C. Piamonteze, and M. Bibes, Adv. Mater. 30, 1707489 (2018).
- A. Y. Borisevich, H. J. Chang, M. Huijben, M. P. Oxley, S. Okamoto, M. K. Niranjan, J. D. Burton, E. Y. Tsymbal, Y. H. Chu, P. Yu, R. Ramesh, S. V. Kalinin, and S. J. Pennycook, Phys. Rev. Lett. 105, 087204 (2010).
- H. Rotella, U. Lüders, P.-E. Janolin, V. H. Dao, D. Chateigner, R. Feyerherm, E. Dudzik, and W. Prellier, Phys. Rev. B 85, 184101 (2012).
- J. M. Rondinelli and N. A. Spaldin, Phys. Rev. B 82, 113402 (2010).
- S. J. May, J.-W. Kim, J. M. Rondinelli, E. Karapetrova, N. A. Spaldin, A. Bhattacharya, and P. J. Ryan, Phys. Rev. B 82, 014110 (2010).
- A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Phys. Rev. B 83, 064101 (2011).
- D. M. Korotin, V. V. Mazurenko, V. I. Anisimov, and S. V. Streltsov, Phys. Rev. B 91, 224405 (2015).
- J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 77, 132104 (2008).
- J.-S. Zhou, J. A. Alonso, V. Pomjakushin, J. B. Goodenough, Y. Ren, J.-Q. Yan, and J.-G. Cheng, Phys. Rev. B 81, 214115 (2010).