Academia.eduAcademia.edu

Outline

Historical Land Use as a Feature for Image Classification

2011, Photogrammetric Engineering & Remote Sensing

https://doi.org/10.14358/PERS.77.4.377

Abstract

This paper analyzes the effect of the addition of historical land-use as a descriptive feature in plot-based image classification when updating land-use/land-cover geospatial databases. Several historical databases have been simulated to assess the influence and significance of this feature in the classification. The causes, nature, and evolution of classification errors as the database currency varies are analyzed; and the impact of these errors on change detection during the updating process is evaluated. The results show that the addition of historical land-use information increases the overall accuracy of image classifications. During a database updating process, changes are detected by comparing the historical land-use with the classification results. The main drawback of employing historical land-use as a descriptive feature in image classification for change detection is that the percentage of undetectable errors significantly increases as more accurate is the database information.

References (44)

  1. Al Momani, B., S.I. McClean, and P.J. Morrow, 2006. Using Dempster-Shafer to incorporate knowledge into satellite image classification, Artificial Intelligence Review, 25(1-2):161-178.
  2. Aronoff, S., 1982. Classification accuracy: A user approach, Photogrammetric Engineering & Remote Sensing, 48(8):1299-1307.
  3. Berberoglu, S., and P.J. Curran., 2004. Merging spectral and textural information for classifying remotely sensed images, Remote Sensing Image Analysis: Including the Spatial Domain (S.M. De Jong and F.D. Van Der Meer, editors), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 113-136.
  4. Blaes, X., L. Vanhalle, and P. Defourny, 2005. Efficiency of crop identification based on optical and SAR image time series, Remote Sensing of Environment, 96(3-4):352-365.
  5. Borak, J.S., and A.H. Strahler, 1999. Feature selection and land cover classification of a MODIS-like data set for a semiarid environment, International Journal of Remote Sensing, 20(5):919-938.
  6. Bruzzone, L., C. Conese, F. Maselli, and F. Roli, 1997. Multisource classification of complex rural areas by statistical and neural- network approaches, Photogrammetric Engineering & Remote Sensing, 63(5):523-533.
  7. Cohen, Y., and M. Shoshany, 2002. Integration of remote sensing, GIS and expert knowledge in national knowledge-based crop recognition in Mediterranean environment, International Journal of Applied Earth Observation and GeoInformation, 4:75-78.
  8. Congalton, R., 1991. A review of assessing the accuracy of classifica- tions of remotely sensed data, Remote Sensing of Environment, 37(1):35-46.
  9. Debeir, O., I. Van den Steen, P. Latinne, E. Wolff, and Ph. Van Ham, 2002. Spectral, spatial and contextual land cover classification using single and multiple classifiers, Photogrammetric Engineer- ing & Remote Sensing, 68(6):597-605.
  10. Elumnoh, A., and R.P. Shrestha, 2000. Application of DEM data to Landsat image classification: Evaluation in a tropical wet-dry landscape of Thailand, Photogrammetric Engineering & Remote Sensing, 66(3):297-304.
  11. Freund, Y., 1995. Boosting a weak learning algorithm for majority, Information and Computation, 121(2):256-285.
  12. Freund, Y., and R.E. Shapire, 1997. A decision-theoretic generaliza- tion of on-line learning and an application to boosting, Journal of Computer and System Sciences, 55(1):119-139.
  13. Heipke, C., and B.M. Straub, 1999. Towards the automatic GIS update of vegetation areas from satellite imagery using digital landscape model as prior information, The International Archives of Photogrammetry and Remote Sensing, 32(2W5):167-174.
  14. Heipke, C., K. Pakzad, and B.M. Straub, 2000. Image analysis for GIS data acquisition, The Photogrammetric Record, 16(96):963-985.
  15. Helmholz, P., and F. Rottensteiner, 2009. Automatic verification of agricultural areas using IKONOS satellite images, The Interna- tional Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(1-4-7/W5), 6 p. Hernández-Orallo, J., M.J. Ramírez-Quintana, and C. Ferri-Ramírez, 2004. Introducción a la Minería de Datos, Pearson Prentice Hall, Madrid, 656 p.
  16. Hoffer, R.M., 1975. Natural Resource Mapping in Mountainous Terrain by Computer Analysis of ERTS-1 Satellite Data, LARS Information Note 061575, Purdue University, Indiana, 124 p.
  17. Huang, X., and J.R. Jensen, 1997. A machine-learning approach to automated knowledge-base building for remote sensing image analysis with GIS data, Photogrammetric Engineering & Remote Sensing, 63(10):1185-1194.
  18. Hutchinson, C.F., 1982. Techniques for combining Landsat and ancillary data for digital classification improvement, Photogram- metric Engineering & Remote Sensing, 48(1):123-130.
  19. Janssen, L.L.F., and H. Middelkoop, 1992. Knowledge-based crop classification of a Landsat Thematic Mapper image, Interna- tional Journal of Remote Sensing, 13(15):2827-2837.
  20. Katila, M., and E. Tomppo, 2002. Stratification by ancillary data in multisource forest inventories employing k-nearest-neighbour estimation, Canadian Journal of Forest Research, 32(9):1548-1561.
  21. Konecny, G., 1996. Hochauflösende fernerkundungssensoren fur kartographische anwendungen in entwicklungsländern, ZPF-Zeitschrift für Photogrammetrie und Fernerkundung, 64:39-51.
  22. Lawrence, R.L., and A. Wright, 2001. Rule-based classification systems using classification and regression tree (CART) analysis, Photogrammetric Engineering & Remote Sensing, 67(10):1137-1142.
  23. Leránoz, A., L. Albizua, and M. Zalba, 2007. Nueva metodología de estimación de superficies de cultivos, Actas del XII Congreso de la Asociación Española de Teledetección, 19-21 September, Mar del Plata, Argentina, pp. 46-51.
  24. Li, D., H. Sui, and P. Xiao, 2002. Automatic change detection of geo-spatial data from imagery, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(2):245-251.
  25. Mas, J.F., 2003. An artificial neural networks approach to map land use/cover using Landsat imagery and ancillary data, Proceed- ings of the International Geosciences and Remote Sensing Symposium IEEE IGARSS 2003, VI, July 21-25, Toulouse, France, pp. 3498-3500.
  26. Maselli, F., C. Conese, T. De Filippis, and R. Romani, 1995. Integration of ancillary data into a maximum-likelihood classifier with nonparametric priors, ISPRS Journal of Pho- togrammetry and Remote Sensing, 50(2):2-11.
  27. McIver, D.K., and M.A. Friedl, 2002. Using prior probabilities in decision-tree classification of remotely sensed data, Remote Sensing of Environment, 81(2-3):253-261.
  28. Olsen, B.P., T. Knudsen, and P. Frederiksen, 2002. Digital change detection for map database update, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(2):357-363.
  29. Pakzad, K., 2002. Knowledge based multitemporal interpretation, International Archives of Photogrammetry, Remote Sensing and Spatial Information, 34(3A):234-239.
  30. Pedroni, L., 2001. Discriminación de diferentes tipos de bosque tropical mediante imágenes de satélite y datos auxiliares, Revista Forestal Centroamericana, 34:12-18.
  31. Quinlan, J.R., 1993. C4.5: Programs for Machine Learning, Morgan Kaufmann Publishing, San Francisco, 302 p.
  32. Raclot, D., F. Colin, and C. Puech, 2005. Updating land cover classification using a rule-based decision system, International Journal of Remote Sensing, 26(7):1309-1321.
  33. Ramírez, J.R., 2005. Updating of geospatial data: A theoretical framework, Surveying and Land Information Science, 65(4):245-254.
  34. Recio, J., 2009.
  35. D. thesis, Universidad Politécnica de Valencia, Valencia, Spain, 289 p.
  36. Recio, J., T. Hermosilla, L.A. Ruiz, and A. Fernández-Sarría, 2010. Addition of geographic ancillary data for updating geo-spatial databases, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(4-8-2/W9):46-51.
  37. Ricchetti, E., 2000. Multispectral satellite image and ancillary data integration for geological classification, Photogrammetric Engineering & Remote Sensing, 66(4):429-435.
  38. Rogan, J., J. Miller, D. Stow, J. Frankling, L. Levien, and C. Fischer, 2003. Land cover change mapping in California using classification trees with multitemporal Landsat TM and ancillary data, Photogrammetric Engineering & Remote Sensing, 69(7):793-804.
  39. Ruiz, L., J. Recio, T. Hermosilla, 2007. Methods for automatic extraction of regularity patterns and its application to object- oriented image classification, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(3/W49A):117-121.
  40. Stathakis, D., and I. Kanellopoulos, 2008. Global elevation ancillary data for land-use classification using granular neural networks, Photogrammetric Engineering & Remote Sensing, 74(1):55-64.
  41. Story, M., and R.G. Congalton, 1986. Accuracy assessment: A user's perspective, Photogrammetric Engineering & Remote Sensing, 52(3):397-399.
  42. Strahler, A.H., T.L. Logan, and A. Bryant, 1978. Improving forest cover classification accuracy from Landsat by incorporating topographic information, Proceedings of the 12 th International Symposium on Remote Sensing of Environment, 20-26 April, Manila, Philippines, pp. 927-942.
  43. Treltz, P., and P. Howarth, 2000. Integrating spectral, spatial, and terrain variables for forest ecosystem classification, Photogram- metric Engineering & Remote Sensing, 66(3):305-317.
  44. Walter, V., 2000. Automatic change detection in GIS databases based on classification of multispectral data, The International Archives of Photogrammetry and Remote Sensing, 33(B4):1138-1145.