Academia.eduAcademia.edu

Outline

125 - 211 GHz low noise MMIC amplifier design for radio astronomy

2019, Experimental Astronomy

https://doi.org/10.1007/S10686-019-09641-Z

Abstract

To achieve the low noise and wide bandwidth required for millimeter wavelength astronomy applications, superconductor-insulator-superconductor (SIS) mixer based receiver systems have typically been used. This paper investigates the performance of high electron mobility transistor (HEMT) based low noise amplifiers (LNAs) as an alternative approach for systems operating in the 125 -211 GHz frequency range. A four-stage, common-source, unconditionally stable monolithic microwave integrated circuit (MMIC) design is presented using the state-of-the-art 35 nm indium phosphide HEMT process from Northrop Grumman Corporation. The simulated MMIC achieves noise temperature (T e ) lower than 58 K across the operational bandwidth, with average T e of 38.8 K (corresponding to less than 5 times the quantum limit (hf/k) at 170 GHz) and forward transmission of 20.5 ± 0.85 dB. Input and output reflection coefficients are better than -6 and -12 dB, respectively, across the desired bandwidth. To the authors knowledge, no LNA currently operates across the entirety of this frequency range. Successful fabrication and implementation of this LNA would challenge the dominance SIS mixers have on sub-THz receivers.

References (18)

  1. Mimura, T.: Invention of high electron mobility transistor (HEMT) and contributions to information and communications field. Fujitsu Sci. Tech. J. 54(5), 3-8 (2018)
  2. Palacios, T., Chakraborty, A., Heikman, S., Keller, S., DenBaars, S.P., Mishra, U.K.: Algan/gan high electron mobility transistors with InGaN back-barriers. IEEE Electron Device Lett. 27(1), 13-15 (2006). https://doi.org/10.1109/LED.2005.860882
  3. Lee, J.-H., Yoon, H.-S., Park, C.-S., Park, H.-M.: Ultra low noise characteristics of AlGaAs/InGaAs/GaAs pseudomorphic HEMT's with wide head T-shaped gate. IEEE Electron Device Lett. 16(6), 271-273 (1995). https://doi.org/10.1109/55.790732
  4. Claude, S., et al.: The band 3 receiver (84-116 GHz) for ALMA. In: 2005 Joint 30th International Con- ference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Williamsburg, VA, USA, vol. 2, pp. 407-408 (2005). https://doi.org/10.1109/ICIMW.2005.1572585
  5. Fujii, Y., et al.: The first six ALMA band 10 receivers. IEEE Trans. Terahertz Sci. Technol. 3(1), 39-49 (2013). https://doi.org/10.1109/TTHZ.2012.2236147
  6. Cuadrado-Calle, D., George, D., Ellison, B., Fuller, G.A., Cleary, K.: Celestial signals: are low-noise amplifiers the future for millimeter-wave radio astronomy receivers? vol. 18 (2017)
  7. Suemitsu, T.: Inp and GaN high electron mobility transistors for millimeter-wave applications. IEICE Electronics Express 12(13), 1-12 (2015). https://doi.org/10.1587/elex.12.20152005
  8. Byerton, E.W., Morgan, M., Pospieszalski, M.W.: Ultra low noise cryogenic amplifiers for radio astronomy. In: 2013 IEEE Radio and Wireless Symposium, Austin, TX, USA (2013). https://doi.org/10.1109/RWS.2013.6486740
  9. Cuadrado-Calle, D. et al.: Broadband MMIC LNAs for ALMA band 2+3 with noise temperature below 28 K. IEEE Trans. Microw. Theory Tech. 65(5), 1589-1597 (2017). https://doi.org/10.1109/ TMTT.2016.2639018
  10. Asayama, S., et al.: Development of ALMA band 4 (125 -163 GHz) receiver. Publ. Astron. Soc. Jpn. 66(3), 57 (2014). https://doi.org/10.1093/pasj/psu026
  11. Belitsky, V., et al.: ALMA band 5 receiver cartridge -design, performance, and commissioning. Astron. Astrophys., vol. 611. https://doi.org/10.1051/0004-6361/201731883 (2018)
  12. Mei, X.B., et al.: 35nm InP HEMT for millimeter and sub-millimeter wave applications. In: 2007 International Conference in Indium Phosphide and Related Materials Conference Proceedings, vol. 19, pp. 59-62 (2007)
  13. Varonen, M., et al.: 160-270-GHz InP HEMT MMIC low-noise amplifiers. In: 2012 IEEE Compound Semiconductor Integrated Circuit Symposium, La Jolla, CA, pp. 1-4 (2012). https://doi.org/10.1109/ CSICS.2012.6340058
  14. Fung, A., et al.: Low noise amplifier modules from 220-270 GHz. In: 2013 European Microwave Integrated Circuit Conference, Nuremberg, pp. 224-227 (2013)
  15. Larkoski, P.V. et al.: Low noise amplifiers for 140 GHz wide-band cryogenic receivers. In: 2013 IEEE MTT-s International Microwave Symposium Digest (MTT), Seattle, WA, pp. 1-4 (2013). https://doi.org/10.1109/MWSYM.2013.6697674
  16. Varonen, M., et al.: A WR4 amplifier module chain with an 87 K noise temperature at 228 GHz, vol. 25, pp. 58-60 (2015). https://doi.org/10.1109/LMWC.2014.2369963
  17. Keysight: Advanced Design System. https://literature.cdn.keysight.com/litweb/pdf/5988-3326EN. pdf?id=921864. Accessed 4 Sep. 2018 (2017)
  18. Friis, H.T.: Noise figures of radio receivers. Proc. IRE 32(7), 419-422 (1944). https://doi.org/10.1109/ JRPROC.1944.232049