Academia.eduAcademia.edu

Outline

ON EXPERIMENTAL PROOF OF "P VERSUS NP"THEOREM

2025

https://doi.org/10.26577/JMMCS202512735

Abstract

We propose a simple and intuitive algorithm for solving md-DFA problem using algorithm concepts within extended operators, our approach shows quadratic polynomial time and hence proves the equivalence between polynomial and non-polynomial classes, we have also shown that minimal nonemptiness of automata problem can be solved in polynomial time with help of modified subset construction, rather that building a product automaton, which lead to factorial size of the memory and time, in this work we also have used many non-tractable existing examples and computed them in polynomial time, which guarantees that our algorithm solves NP-complete problem in almost linear polynomial time, we have also avoided the problem of product automata by an algorithmic approach, we are also giving the starting ground for the proof of back-reference problem which was discussed before, notion to the globally local increment is also given as the main argument towards the resolution of "P versus NP" theorem, which coincides with the finitarity term in general mathematics.

References (19)

  1. Cook S. "The importance of the P versus NP question" , Journal of the ACM (JACM) (2003): 50(1), 27-29.
  2. Rabin M. O., Scott D. "Finite automata and their decision problems" , IBM journal of research and development (1959): 3(2), 114-125.
  3. Kupferman O., Zuhovitzky S. "An improved algorithm for the membership problem for extended regular expressions" , In International Symposium on Mathematical Foundations of Computer Science (2002, August): pp. 446-458, Berlin, Heidelberg: Springer Berlin Heidelberg.
  4. Sen K., Rosu G. "Generating optimal monitors for extended regular expressions" , Electronic Notes in Theoretical Computer Science (2003): 89(2), 226-245.
  5. Martens J. "Deciding minimal distinguishing DFAs is NP-complete" , (2023): 10.48550/arXiv.2306.03533.
  6. Hsieh S. C. "Product construction of finite-state machines" , In Proc. of the World Congress on Engineering and Computer Science (2010): pp. 141-143.
  7. Fernau H., Hoffmann S., Wehar M. "Finite automata intersection non-emptiness: Parameterized complexity revisited" , (2021): 10.48550/arXiv.2108.05244.
  8. de Oliveira M., Wehar M. "Intersection non-emptiness and hardness within polynomial time" , In International Conference on Developments in Language Theory (2018, August): pp. 282-290, Cham: Springer International Publishing.
  9. Pitt L., Warmuth M. K. "The minimum consistent DFA problem cannot be approximated within and polynomial" , In Proceedings of the twenty-first annual ACM symposium on Theory of computing (1989, February): pp. 421-432.
  10. Gelade W. "Succinctness of regular expressions with interleaving, intersection and counting" , Theoretical Computer Science (2010): 411(31-33), 2987-2998.
  11. Bastos R., Broda S., Machiavelo A., Moreira N., Reis R. "On the state complexity of partial derivative automata for regular expressions with intersection" , In International Conference on Descriptional Complexity of Formal Systems (2016, June): pp. 45-59, Cham: Springer International Publishing.
  12. Collins E. R., Kucher C., Zetzsche G. "The complexity of separability for semilinear sets and Parikh automata" , (2024): 10.48550/arXiv.2410.00548.
  13. Louiz A. "The proof of a series as an upper bound for the number of positive square-free numbers and thus for the Mertens function" , (2025): 10.13140/RG.2.2.26294.82247.
  14. Kardeis Y. L. "The Universal Fractal Chirality of Riemann Zeta-Function: On the Symmetric Distribution of Prime Numbers, the Uniform Distribution of Nontrivial Zeros along the Critical Line, their Physical and Chemical Correlations" , (2024): 10.13140/RG.2.2.34775.69285.
  15. Meel Kuldeep S., de Colnet Alexis "# CFG and# DNNF admit FPRAS" , (2024): arXiv preprint arXiv:2406.18224.
  16. Louiz A. "A Proof That the Set of NP-problems is Bigger Than the Set of P-problems by Using a Logical Consideration" , WSEAS Transactions on Computers (2023): 22, 159-170.
  17. Авторлар туралы мәлiмет: Мырзахмет Сыздықов (корреспондент автор) -Қ.И. Сәтбаев атындағы ҚазҰТЗУ докто- рантура ғылыми қызметкерi, (Алматы, Қазақстан, e-mail: mirzakhmets@icloud);
  18. Яник Леон Кардеис -Кайзерслаутерн-Ландау Рейнланд-Пфальц технологиялық универси- тетiнiң PhD докторанты, (Пфальц, Германия, e-mail: yannickkardeis@gmail.com). Сведения об авторах: Мирзахмет Сыздыков (корреспондент автор) -Постдокторант-исследователь в КазНИ- ТУ им. К.И. Сатпаева, (Алматы, Казахстан, электронная почта: mirzakhmets@icloud);
  19. Яник Леон Кардеис -PhD студент в Рейнланд-Пфальцский технический университет Кайзерслаутерн-Ландау (Пфальц, Германия, электронная почта: yannickkardeis@gmail.com). Information about authors: Mirzakhmet Syzdykov (corresponding author) -Postdoctoral researcher at Satbayev University, (Almaty, Kazakhstan, e-mail: mirzakhmets@icloud);