Crossing statistics of laser light scattered through a nanofluid
2017, Journal of the Optical Society of America
https://doi.org/10.1364/AO.XX.XXXXXXAbstract
In this paper, we investigate the crossing statistics of speckle patterns formed in Fresnel diffraction region by a laser beam scattering through a nanofluid. We extend zerocrossing statistics to assess dynamical properties of nanofluid. According to joint probability density function of laser beam fluctuation and its time derivative, theoretical framework for Gaussian and non-Gaussian regimes are revisited. We count number of crossings not only at zero level but also for all available thresholds to determine the average speed of moving particles. Using probabilistic framework in determining crossing statistics, a priori Gaussianity is not essentially considered, therefore even in presence of deviation from Gaussian fluctuation, this modified approach is capable to compute relevant quantities such as mean value of speed more precisely. Generalized total crossing which represents the weighted summation of crossings for all thresholds to quantify small deviation from Gaussian statistics is introduced. This criterion can also manipulate the contribution of noises and trends to infer reliable physical quantities. The characteristic time scale for having successive crossings at a given threshold is defined. In our experimental setup, we find that increasing sample temperature leads to more consistency between Gaussian and perturbative non-Gaussian predictions. The maximum number of crossing does not necessarily occur at mean level indicating that we should take into account other levels in addition to zero level to achieve more accurate assessments.
References (67)
- R. J. Adler, The Geometry of Random fields, (John Wiley and Sons, 1981).
- R. J. Adler and J. Taylor, Random Fields and Geometry, (Springer, 2007).
- S. O. Rice, " Mathematical Analysis of Random Noise," Bell System Tech. J. 23, 282-332 (1944); Bell System Tech. J. 24, 46 (1945).
- P. H. Brill, "A Brief Outline of the Level Crossing Method in Stochastic Models" CORS Bulletin 34, 4 (2000).
- G. R. Jafari, M. S. Movahed, S. M. Fazeli, M. R. Rahimi Tabar, S. F. Masoudi, "Level crossing analysis of the stock markets," J. Stat. Mech. 06, P06008 (2006).
- M. Vahabi, G. R. Jafari and S. M. S. Movahed, "Analysis of fractional Gaussian noises using level crossing method" j. stat. mech. 11 p11021 (2011).
- D. E. Newland, An introduction to Random vibrations, spectral and wavelet analysis, Third Edition, (Longman Scientific Technical, 1993).
- V. I. Khimenko, "The average number of trajectory overshoots of a non- Gaussian random process above a given level," Izv. Vyssh. Uchebn. Zaved., Radiofiz. 21, 1170-1176 (1977).
- F. Shahbazi, S. Sobhanian, M. Reza Rahimi Tabar, S. Khorram, G. R. Frootan and H. Zahed, "Level crossing analysis of growing surfaces," J. Phys. A: Math. Gen. 36, 2517-2524 (2003).
- M. Sadegh Movahed, A. Bahraminasab, H. Rezazadeh and A. A. Ma- soudi, "Level Crossing Analysis of Burgers Equation in 1+1 Dimensions," J. Phys. A: Math. Gen. 39, 3903-3909 (2006).
- M. Ghasemi Nezhadhaghighi, S. M. S. Movahed, T. Yasseri, S. M. Vaez Allaei, "Crossing Statistics of Anisotropic Stochastic Surface," arXiv 1508.01409 (2016).
- K. Ebeling, "Experimental investigation of some statistical properties of monochromatic speckle patterns," Opt. Acta 26, 1505-1521 (1979).
- R. Barakat, "The level-crossing rate and above-level duration time of the intensity of a Gaussian random process," Inf. Sci. (N.Y.) 20, 83-87 (1980).
- R. D. Bahuguna, K. K. Gupta, K. Singh, "Expected number of intensity level crossings in a normal speckle pattern," J. Opt. Soc. Am. 70, 874- 876 (1980).
- C. Kurtz, H. Hoadley, and J. DePalma, "Design and synthesis of random phase diffusers," J. Opt. Soc. Am. 63,1080-1092 (1973).
- J. W. Goodman,Speckle Phenomena in Optics: Theory and Applica- tions (Roberts, 2006).
- N. Takai, T. Iwai, T. Asakura, "Laser speckle velocimeter using a zero- crossing technique for spatially integrated intensity fluctuation," OPT. ENGNG. 20, 320-325 (1981).
- T. Asakura, N. Takai, "Dynamic Laser Speckles and Their Application to Velocity Measurements of the Diffuse Object," Appl. Phys. 25, 179-194 (1981).
- N.Takai, T. Iwai, T.Asakura, "Real-time velocity measurement for a diffuse object using zero-crossings of laser speckle," J. Opt. Soc. Am. 70, 4 450-455 (1980).
- T. Iwai, N. Takai, T. Asakura, "Simultaneous Magnitude and Direction Measurements of a Diffuse Object's Velocity Using the Rotating Direc- tional Detecting Aperture in a Laser Speckle Zero-crossing Method," Optica Acta 28, 6 857-870 (1981).
- N. Takai, Sutanto, T. Asakura, "Dynamic statistical properties of laser speckle due to longitudinal motion of a diffuse object under Gaussian beam illumination," J. Opt. Soc. Am. 70, 7 827-834 (1980).
- R. Barakat, "Zero-crossing rate of differentiated speckle intensity," J. Opt. Soc. Am. A 11, 671-673 (1994).
- R. Barakat, "Level-crossing statistics of aperture-integrated isotropic speckle," J. Opt. Soc. Am. A 5, 1244-1247 (1988).
- H. T. Yura and S. G. Hanson, "Mean level signal crossing rate for an arbitrary stochastic process," J. Opt. Soc. Am. A 27, 4 797-807 (2010).
- R. Barakat, "Probability density of the radial gradient of aperture- averaged isotropic-speckle intensity," J. Opt. Soc. Am. A 8, 2 450-451 (1991).
- B. S. Ryden, A. L. Melott, D. A. Craig, J. R. Gott III, D. H. Wenberg, R. J. Scherrer, S. P. Bhavsar and J. M. Miller, "The area of isodensity contours in cosmological models and galaxy surveys," The Astrophysical Journal 340, 647 (1989).
- B. S. Ryden, "The area of isodensity contours as a measure of large- scale structure", The Astrophysical Journal 333, 41-44 (1988).
- T. Matsubara, "Statistics of Isodensity Contours in Redshift Space," The Astrophysical Journal 457, 13 (1996).
- T. Matsubara, "Statistics of smoothed cosmic fields in perturbation theory," The Astrophysical Journal 584, 1-33 (2003).
- M. S. Movahed and S. Khosravi, "Level Crossing Analysis of Cosmic Mi- crowave Background Radiation: A method for detecting cosmic strings," Journal of Cosmology and Astroparticle Physics 1103, 012 (2011).
- P. Beckmann, Probability in Communication Engineering (Hartcourt Brace & World, 1967), Sec. 6.7.
- S. Kakac, A. Pramuanjaroenkij, " Review of convective heat transfer enhancement with nanofluids," Int. J. Heat and Mass Transf. 52, 3187- 3196 (2009).
- S. Kakac, A. Pramuanjaroenkij, "Single-phase and two-phase treat- ments of convective heat transfer enhancement with nanofluids -A state-of-the-art review," International Journal of Thermal Sciences 100, 75-97 (2016).
- E. Ebrahimnia-Bajestan, M. Charjouei Moghadam, H. Niazmand, W. Daungthongsuk, S. Wongwises, "Experimental and numerical investi- gation of nanofluids heat transfer characteristics for application in solar heat exchangers," International Journal of Heat and Mass Transfer 92, 1041-1052 (2016).
- W. Duangthongsuk, S. Wongwises, "Comparison of the effects of mea- sured and computed thermophysical properties of nanofluids on heat transfer performance," Experimental Thermal and Fluid Science 34, 616-624 (2010).
- W. H. Azmi, K.V. Sharma, R. Mamat, G. Najafi, M. S. Mohamad, "The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids: A review," Renewable and Sustainable Energy Reviews 53, 1046-1058 (2016).
- J. Buongiorno, D.C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, "A benchmark study on the thermal conductivity of nanofluids," J. Appl. Phys. 106, 094312 (2009).
- X.-Q. Wang, A.S. Mujumdar, "Critical review of heat transfer character- istics nanofluids," Int. J. Therm. Sci. 46, 1-19 (2007).
- S. Guyot, M. C. Pèron and E. Delèchelle, "Spatial speckle character- ization by Brownian motion analysis," Phys. Rev. E. 70, 046618 1-8 (2004).
- D. Chicea, "Speckle size, intensity and contrast measurement applica- tion in micron-size particle concentration assessment," The European Physical Journal Applied Physics 40, 305-310 (2007).
- Y. Aizu and T. Asakura, Spatial Filtering Velocimetry: Fundamentals and Applications , (Springer , 2006)
- R. J. Scherrer, E. Bertschinger, "Statistics of primordial density pertur- bations from discrete seed masses," The Astrophysical Journal 381, 10 349-360 (1991).
- R. Juszkiewicz, D. H. Weinberg, P. Amsterdamski, M. Chodorowski, F. Bouchet, "Weakly nonlinear Gaussian fluctuations and the edgeworth expansion," The Astrophysical Journal 442, 39-56 (1995).
- F. Bernardeau, L. Kofman, "Properties of the cosmological density distribution function," The Astrophysical Journal 443, 479-498 (1995).
- S.K. Ma, Statistical Mechanics (Philadelphia:World Scientific, 1985).
- B. Castaing, Y. Gagne, and E. J. Hopfinger, "Velocity probability density functions of high Reynolds number turbulence," Physica D. 46, 177 (1990).
- B. Chabaud, A. Naert, J. Peinke, F. Chillà, B. Castaing, and B. Hébral, "A transition toward developed turbulence," Phys. Rev. Lett. 73, 3227 (1994).
- A. Arneodo, E. Bacry, and J. F. Muzy, "Random cascades on wavelet dyadic trees," J. Math. Phys. 39, 4142 (1998).
- E. Bacry, J. Delour, and J. F. Muzy, "Multifractal random walk," Phys. Rev. E, 64, 026103 (2001).
- S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, and Y. Dodge, "Turbulent Cascades in Foreign Exchange Markets," Nature London 381, 767 (1996).
- K. Kiyono, Z. R. Struzik, and Y. Yamamoto, "Criticality and phase translation in stock-price fluctuation," Phys. Rev. Lett. 96, 068701 (2006).
- K. Kiyono, Z. R. Struzik, N. Aoyagi, S. Sakata, J. Hayano, and Y. Yamamoto, "Critical scale invariance in a healthy human heart rate," Phys. Rev. Lett. 93, 178103 (2004).
- K. Kiyono, Z. R. Struzik, N. Aoyagi, F. Togo, and Y. Yamamoto, "Phase translation in a healthy human heart rate," Phys. Rev. Lett. 95, 058101 (2005).
- F. Shayeganfar, S. Jabbari-Farouji, M. Sadegh Movahed, G. R. Ja- fari, and M. Reza Rahimi Tabar, "Stochastic qualifier of gel and glass transitions in laponite suspensions," Phys. Rev. E, 81, 061404 (2010).
- F. Shayeganfar, M. Sadegh Movahed, G.R. Jafari, "Discrimination of Sol and Gel states in an aging clay suspension," Chemical Physics 423, 167-172 (2013).
- Z. Koohi Lai, S. Vasheghani Farahani, S. M. S. Movahed, G. R. Jafari, "Coupled uncertainty provided by a multifractal random walker," Physics Letters A 379, 2284-2290 (2015).
- R. Karimzadeh, M. Arshadi, "Thermal lens measurement of the nonlin- ear phase shift and convection velocity," Lasar Phys. 23, 115402 (2013).
- W. I. Goldburg, "Dynamic light scattering," American Journal of Physics, 67, 1152 (1999).
- R. D. Mountain, "Spectral Distribution of Scattered Light in a Simple Fluid," Rev. Mod. Phys. 38, 205-214 (1966).
- D. W. Schaefer and B. J. Berne, "Light Scattering from Non-Gaussian Concentration Fluctuations," Phys. Rev. Lett. 28, 475-478 (1972).
- B. J. Berne and R. Pecora, "Laser Light Scattering from Liquids," Annu. Rev. Phys. Chem. 25, 233-253 (1974).
- R.K. Pathria and Paul D. Beale, Statistical Mechanics, Third Edition, 2011.
- A. R. Pratt, Some theoretical considerations concerning time statistics in signal detection, in Signal Processing, Edited by J. Griffiths, P. Stocklin, and C. van Schooneveld, (Academic, New York, 1973).
- S. K. Brar and M. Verma, "Measurement of nanoparticles by light scattering techniques," Trends Anal. Chem. 30(1), 4-17 (2011).
- A. Braun, O. Couteau, K. Franks, V. Kestens, G. Roebben, A. Lamberty and T. P. J. Linsinger, "Validation of dynamic light scattering and cen- trifugal liquid sedimentation methods for nanoparticle characterisation," Advanced Powder Technology, 22(6), 766-770 (2011).
- D. Chicea, "Nanoparticle sizing by coherent light scattering computer simulation results," Journal of Optoelectronics and Advanced Materials, 10, 4 (2008).
- R. D. Boyd, S. K. Pichaimuthu and A. Cuenat, "New approach to inter-technique comparisons for nanoparticle size measurements: using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering," Colloids Surf., A Physicochem. Eng. Aspects, 387 (1-3), 35-42 (2011).