Effective constructions of separable quotients of Banach spaces
Abstract
A simple way of obtaining separable quotients in the class of weakly countably determined (WCD) Banach spaces is presented (Theorem 1). A large class of Banach lattices, possessing as a quotient c 0 , l 1 , l 2 , or a reflexive Banach space with an unconditional Schauder basis, is indicated (Theorem 2).
References (23)
- C.D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces, Academic Press, New York, 1978.
- D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach space, Ann. of Math. 88 (1968), 35-46.
- P. Casazza, in Book Reviews, Bull. Amer. Math. Soc. 30 (1994), 117-124.
- M. Fabian and G. Godefroy, The dual of every Asplund space admits resolution of the identity, Studia Math. 91 (1988), 141-151.
- K. John and V. Zizler, Projections in dual weakly compactly generated Banach spaces, Studia Math. 49 (1973), 41-50.
- W.B. Johnson and H.P. Rosenthal, On ω * -basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77-92.
- J. Kakol and W. Śliwa, Remarks concerning the separable quotient problem, Note Mat. 13 (1993), 277-282.
- E. Lacey, Separable quotients of Banach spaces, An. Acad. Brasil. Cienc. 44 (1972), 185-189.
- J. Lindenstrauss, Weakly compact sets -their topological properties and the Banach spaces they generate, Proc. Symp. Infinite Dimensional Topology, Ann. of Math. Studies, Princeton Univ. Press, 1967.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.
- W.A.J. Luxemburg and A.C. Zaanen, Riesz Spaces I, North Holland Publ. Comp., Amsterdam, 1971.
- J.T. Marti, Introduction to the Theory of Bases, Springer-Verlag, Berlin 1969.
- P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, 1991.
- H.P. Rosenthal, On quasicomplemented subspaces of Banach spaces with an appendix on com- pactness of operators from L p (µ) to L r (ν), J. Funct. Anal. 4 (1969), 176-214.
- S.A. Saxon and A. Wilansky, The equivalence of some Banach space problems, Colloq. Math. 37 (1977), 217-226.
- H.H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin, 1974.
- I. Singer, Bases in Banach Spaces I, Springer-Verlag, Berlin, 1970.
- C. Stegal, A proof of the theorem of Amir and Lindenstrauss, Israel J. Math. 68 (1989), 185-192.
- W. Śliwa and M. Wójtowicz, Separable Quotients of Locally Convex Spaces, Bull. Pol. Acad. Sci. Math. 43 (1995), 175-185.
- M. Valdivia, Resolutions of the identity in certain Banach spaces, Collect. Math. 39 (1988), 127-140.
- M. Valdivia, Some properties of weakly countably determined Banach spaces, Studia Math. 93 (1989), 137-144.
- M. Valdivia, Projective resolution of identity in C(K) spaces, Arch. Math. (Basel) 54 (1990), 493-498.
- L.Vašak, On one generalization of weakly compactly generated Banach spaces, Studia Math. 70 (1981), 11-19.