Academia.eduAcademia.edu

Outline

Effective constructions of separable quotients of Banach spaces

Abstract

A simple way of obtaining separable quotients in the class of weakly countably determined (WCD) Banach spaces is presented (Theorem 1). A large class of Banach lattices, possessing as a quotient c 0 , l 1 , l 2 , or a reflexive Banach space with an unconditional Schauder basis, is indicated (Theorem 2).

References (23)

  1. C.D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces, Academic Press, New York, 1978.
  2. D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach space, Ann. of Math. 88 (1968), 35-46.
  3. P. Casazza, in Book Reviews, Bull. Amer. Math. Soc. 30 (1994), 117-124.
  4. M. Fabian and G. Godefroy, The dual of every Asplund space admits resolution of the identity, Studia Math. 91 (1988), 141-151.
  5. K. John and V. Zizler, Projections in dual weakly compactly generated Banach spaces, Studia Math. 49 (1973), 41-50.
  6. W.B. Johnson and H.P. Rosenthal, On ω * -basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77-92.
  7. J. Kakol and W. Śliwa, Remarks concerning the separable quotient problem, Note Mat. 13 (1993), 277-282.
  8. E. Lacey, Separable quotients of Banach spaces, An. Acad. Brasil. Cienc. 44 (1972), 185-189.
  9. J. Lindenstrauss, Weakly compact sets -their topological properties and the Banach spaces they generate, Proc. Symp. Infinite Dimensional Topology, Ann. of Math. Studies, Princeton Univ. Press, 1967.
  10. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.
  11. W.A.J. Luxemburg and A.C. Zaanen, Riesz Spaces I, North Holland Publ. Comp., Amsterdam, 1971.
  12. J.T. Marti, Introduction to the Theory of Bases, Springer-Verlag, Berlin 1969.
  13. P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, 1991.
  14. H.P. Rosenthal, On quasicomplemented subspaces of Banach spaces with an appendix on com- pactness of operators from L p (µ) to L r (ν), J. Funct. Anal. 4 (1969), 176-214.
  15. S.A. Saxon and A. Wilansky, The equivalence of some Banach space problems, Colloq. Math. 37 (1977), 217-226.
  16. H.H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin, 1974.
  17. I. Singer, Bases in Banach Spaces I, Springer-Verlag, Berlin, 1970.
  18. C. Stegal, A proof of the theorem of Amir and Lindenstrauss, Israel J. Math. 68 (1989), 185-192.
  19. W. Śliwa and M. Wójtowicz, Separable Quotients of Locally Convex Spaces, Bull. Pol. Acad. Sci. Math. 43 (1995), 175-185.
  20. M. Valdivia, Resolutions of the identity in certain Banach spaces, Collect. Math. 39 (1988), 127-140.
  21. M. Valdivia, Some properties of weakly countably determined Banach spaces, Studia Math. 93 (1989), 137-144.
  22. M. Valdivia, Projective resolution of identity in C(K) spaces, Arch. Math. (Basel) 54 (1990), 493-498.
  23. L.Vašak, On one generalization of weakly compactly generated Banach spaces, Studia Math. 70 (1981), 11-19.