Academia.eduAcademia.edu

Outline

Disordered fermions on lattices and their spectral properties

2010, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1010.4410

Abstract

We study Fermionic systems on a lattice with random interactions through their dynamics and the associated KMS states. These systems require a more complex approach compared with the standard spin systems on a lattice, on account of the difference in commutation rules for the local algebras for disjoint regions, between these two systems. It is for this reason that some of the known formulations and proofs in the case of the spin lattice systems with random interactions do not automatically go over to the case of disordered Fermion lattice systems. We extend to the disordered CAR algebra, some standard results concerning the spectral properties exhibited by temperature states for disordered quantum spin systems. We discuss the Arveson spectrum and its connection with the Connes and Borchers Γ-invariants for such W * -dynamical systems. In the case of KMS states exhibiting a natural property of invariance with respect to the spatial translations, some interesting properties, associated with standard spinglass-like behaviour, emerge naturally. It covers infinite-volume limits of finite-volume Gibbs states, that is the quenched disorder for Fermions living on a standard lattice Z d . In particular, we show that a temperature state of the systems under consideration can generate only a type III von Neumann algebra (with the type III 0 component excluded). Moreover, in the case of the pure thermodynamic phase, the associated von Neumann is of type III λ for some λ ∈ (0, 1], independent of the disorder. Such a result is in accordance with the principle of self-averaging which affirms that the physically relevant quantities do not depend on the disorder. The present approach can be viewed as a further step towards fully understanding the very complicated structure of the set of temperature states of quantum spin glasses, and its connection with the breakdown of the symmetry for the replicas.

References (58)

  1. Accardi L., Fidaleo F., Mukhamedov F. Quantum Markov states and chains on the CAR algebras, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10 (2007), 165-183.
  2. Aizenman M., Wehr J. Rounding effects of quenched randomness on first- order phase transitions, Commun. Math. Phys. 130 (1990), 489-528.
  3. Araki H. Remarks on spectra of modular operators of von Neumann algebras, Commun. Math. Phys. 28 (1972), 267-278.
  4. Araki H. Operator algebras and statistical mechanics, in Mathematical prob- lems in theoretical physics, Proc. Internat. Conf. Rome 1977 Dell'Antonio G., Doplicher S. Jona-Lasinio G. ed., Lecture Notes in Physics 90, 94-105, Springer, Berlin-Heidelberg-New York, 1978.
  5. Araki H. Standard Potentials for Non-Even Dynamics, Commun. Math. Phys. 262 (2006), 161-176.
  6. Araki H., Moriya H. Equilibrium Statistical Mechanics of Fermion Lattice Systems, Rev. Math. Phys. 15 (2003), 93-198.
  7. Araki H., Moriya H. Conditional expectations relative to a product state and the corresponding standard potentials, Commun. Math. Phys. 246 (2004), 113-132.
  8. Barreto S. D. A quantum spin system with random interactions I, Proc. Indian Acad. Sci. 110 (2000), 347-356.
  9. Barreto S. D., Fidaleo F. On the Structure of KMS States of Disordered Systems, Commun. Math. Phys. 250 (2004), 1-21.
  10. Barreto S. D., Fidaleo F. Some Topics in quantum Disordered Systems, Atti. Sem. Mat. Fis. Univ. Modena e Reggio Emillia 53 (2005), 215-234.
  11. Bellissard J., van Elst A., Schulz-Baldes H. Noncommutative geometry of the quantum Hall effect, J. Math. Phys. 35 (1994), 5373-5451.
  12. Binder K., Young A. P. Spin glass: Experimental facts, theoretical concepts and open questions, Rev. Mod. Phys. 58 (1986), 801-976.
  13. Borchers H.-J. Characterization of inner * -automorphisms of W * -algebras, Publ RIMS Kyoto Univ. 10 (1974), 11-49.
  14. Bratteli O., Robinson D. W. Operator algebras and quantum statistical me- chanics I, Springer, Berlin-Heidelberg-New York, 1981.
  15. Bratteli O., Robinson D. W. Operator algebras and quantum statistical me- chanics II, Springer, Berlin-Heidelberg-New york, 1981.
  16. Connes A. Une classification des facteurs de type III, Ann. Scient. Éc. Norm. Sup. 6 (1973), 133-252.
  17. Dixmier J. C * -algebras, North Holland, Amsterdam-New York-Oxford, 1977.
  18. Driessler W. On the type of local algebras in quantum field theory, Commun. Math. Phys. 53 (1977), 295-297.
  19. Edwards R. G., Anderson P. W. Theory of spin glasses, J. Phys. F 5 (1975), 965-974.
  20. van Enter A. C. D., Maes C., Schonmann R. H., Shlosman S., The Griffiths singularity random field, Amer. Math. Soc. Trans. 198 (2000), 51-58.
  21. van Enter A. C. D., van Hemmen J. L. The thermodynamic limit for long range random systems, J. Stat. Phys. 32 (1983), 141-152.
  22. van Enter A. C. D., van Hemmen J. L. Statistical mechanical formalism for spin-glasses, Phys. Rev. A 29 (1984), 355-365.
  23. Fidaleo F. KMS States and the Chemical Potential for Disordered Systems, Commun. Math. Phys. 262 (2006), 373-391.
  24. Fidaleo F. Fermi Markov states, J. Operator Theory, to appear.
  25. Guerra F. Broken replica symmetry bounds in the mean field spin glass model, Commun. Math. Phys. 233 (2003), 1-12.
  26. van Hemmen J. L., Palmer L. G. The replica method and a solvable spin glass model, J. Phys. A : Math. Gen. 12 (1979), 563-580.
  27. van Hemmen J. L., Palmer L. G. The thermonynamic limit and the replica method for short-range random systems, J. Phys. A : Math. Gen. 15 (1982), 3881-3890.
  28. Herman R. H., Longo R. A note on the Γ-spectrum of an automorphism group, Duke Math. J. 47 (1980), 27-32.
  29. Hewitt E., Ross K. A. Abstract harmonic analysis I, Springer, Berlin- Heidelberg-New York 1979.
  30. Kastler D. Equilibrium states of matter and operator algebras, in Symposia Mathematica Vol. XX, 49-107, Academic Press 1976.
  31. Kelley J. L. General topology, Springer, Berlin-Heidelberg-New York 1975.
  32. Kishimoto A. Equilibrium states of a semi-quantum lattice system, Rep. Math. Phys. 12 (1977), 341-374.
  33. Külske C. (Non-)Gibbsianness and phase transitions in random lattice spin models, Markov Process. Relat. Fields 5 (1999), 357-383.
  34. Kunz H., Souillard B. Sur le spectre des opérateurs aux différence finies aléatoires, Commun. Math. Phys. 78 (1986), 201-246.
  35. Longo R. Algebraic and modular structure of von Neumann algebras of Physics, Proc. Symp. Pure Math. 38 (1982), 551-566.
  36. Longo R. An analogue of the Kac-Wakimoto formula and black hole condi- tional entropy, Commun. Math. Phys. 186 (1997), 451-479.
  37. Matsui T. Ground States of Fermions on Lattices, Commun. Math. Phys. 182 (1996), 723-751.
  38. Matsui T. Quantum Statistical Mechanics and Feller Semigroup, Quantum Probab. Commun. 10 (1998), 101-123.
  39. Matsui T. On Spectral Gap, U(1) Symmetry and Split Property in Qauntum Spin Chains, arXiv [math-ph]:0808.1537v1 .
  40. Mezard M., Parisi G., Virasoro M. A. Spin-glass theory and beyond, World Scientific, Singapore, 1986.
  41. Newman M. N. Topics in disordered systems, Birkhäuser, Basel-Boston- Berlin, 1997.
  42. Newman M. N., Stein D. L. Ordering and broken symmetry in short-ranged spin glasses, J. Phys.: Condens. Matter 15 (1998), R1319.
  43. Nielsen O. A. Direct integral theory, Marcel Dekker, New York-Basel, 1980.
  44. Pedersen G. K. C * -algebras and their automorphism groups, Academic press, London, 1979.
  45. Sherrington D., Kirkpatrick S. Solvable model of a spin-glass, Phys. Rev. Lett. 35 (1975), 1792-1796.
  46. Størmer E. Spectra of states, and asymptotically Abelian C * -algebras, Com- mun. Math. Phys. 28 (1972), 279-294.
  47. Strǎtilǎ S. Modular theory in operator algebras, Abacus press, Tunbridge Wells, Kent, (1981).
  48. Strǎtilǎ S., Zsidó, L. Lectures on von Neumann algebras, Abacus press, Tun- bridge Wells, Kent, (1979).
  49. Streater R. F., Wightman A. S. PCT, spin and statistics and all that, Prince- ton University Press, New Jersey 2000.
  50. Sunder V. S. An invitation to von Neumann algebras, Springer, Berlin- Heidelberg-New York 1986.
  51. Sutherland C. E. Crossed products, direct integrals and Connes' classification of type III-factors, Math. Scand. 40 (1977), 209-214.
  52. Takesaki M. Theory of operator algebras I, Springer, Berlin-Heidelberg-New York 1979.
  53. Takesaki M. Theory of operator algebras III, Springer, Berlin-Heidelberg- New York 1979.
  54. Talagrand M. The generalized Parisi formula, C. R. Acad. Sci. Paris, Ser. I 337 (2003), 111-114.
  55. Tanaka T. Moment problem in replica method, Interdisciplin. Inf. Sci. 13 (2007), 17-23.
  56. Tasaki H. The Hubbard model-an introduction and selected rigorous results, J. Phys.: Condens. Matter 10 (1998), 4353.
  57. Wreszinski W. F., Salinas S. A. Disorder and Competition in Soluble Lattice Models, Series on Advances in Statistical Mechanics, Vol. 9. World Scientific, Singapore, 1993.
  58. Young A. P. (editor), Spin glasses and random fields, World Scientific, Sin- gapore, 1997.