Fluctuating antenna model: Applications and prospects
2019, Lithuanian Journal of Physics
https://doi.org/10.3952/PHYSICS.V58I4.3881Abstract
Recently, we proposed a simple conceptual fluctuating antenna model (FAM), describing excitation diffusion and trapping in a continuous medium, where variations of the excitation transfer pathways are taken into account by the introduced fractional space dimension. Since then, this model has been successfully applied to simulate multi-exponential excitation quenching kinetics in a series of plant photosynthetic systems, purified from the thylakoid membranes, without invoking a radical pair state in the reaction centre. Here, we overview this model and its parameters obtained for various systems, and extend the area of its applications to several pigment–protein supercomplexes containing the photosystem I (PSI). We show that while the diffusion in the PSI core is virtually three-dimensional, the PSI core aggregates interconnected with other light-harvesting complexes (LHCI and/or LHCII) are characterized by a substantially reduced dimension, which indicates a smaller number of energy...
References (51)
- R.E. Blankenship, Molecular Mechanisms of Photo- synthesis, 2nd ed. (Wiley Blackwell, Chichester, 2014).
- E. Belgio, E. Kapitonova, J. Chmeliov, C.D.P. Duffy, P. Un gerer, L. Valkunas, and A.V. Ruban, Eco- nomic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps, Nat. Commun. 5, 4433 (2014).
- S. Farooq, J. Chmeliov, E. Wientjes, R. Koehorst, A. Bader, L. Valkunas, G. Trinkunas, and H. van Amerongen, Dynamic feedback of the photo- system II reaction centre on photoprotection in plants, Nat. Plants 4(4), 225-231 (2018).
- J. Kromdijk, K. Głowacka, L. Leonelli, S.T. Gabilly, M. Iwai, K.K. Niyogi, and S.P. Long, Improving photosynthesis and crop productivity by accel- erating recovery from photoprotection, Science 354, 857-861 (2016).
- C.D.P. Duffy, L. Valkunas, and A.V. Ruban, Light- harvesting processes in the dynamic photosyn- thetic antenna, Phys. Chem. Chem. Phys. 15(43), 18752-18770 (2013).
- J. Chmeliov, G. Trinkunas, H. van Amerongen, and L. Valkunas, Light harvesting in a fluctuating antenna, J. Am. Chem. Soc. 136(25), 8963-8972 (2014).
- K. Broess, G. Trinkunas, C.D. van der Weij-de Wit, J.P. Dekker, A. van Hoek, and H. van Amerongen, Excitation energy transfer and charge separation in photosystem II membranes revisited, Biophys. J. 91(10), 3776-3786 (2006).
- L. Valkunas, G. Trinkunas, J. Chmeliov, and A.V. Ruban, Modeling of exciton quenching in photosystem II, Phys. Chem. Chem. Phys. 11(35), 7576-7584 (2009).
- S. Caffarri, K. Broess, R. Croce, and H. van Ame- rongen, Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes, Biophys. J. 100(9), 2094- 2103 (2011).
- D.I.G. Bennett, K. Amarnath, and G.R. Fleming, A structure-based model of energy transfer re- veals the principles of light harvesting in pho- tosystem II supercomplexes, J. Am. Chem. Soc. 135(24), 9164-9173 (2013).
- V.I. Novoderezhkin, M.A. Palacios, H. van Amerongen, and R. van Grondelle, Excitation dynamics in the LHCII complex of higher plants: Modeling based on the 2.72 Å crystal structure, J. Phys. Chem. B 109(20), 10493-10504 (2005).
- F. Müh, T. Renger, and A. Zouni, Crystal struc- ture of cyanobacterial photosystem II at 3.0 Å resolution: A closer look at the antenna system and the small membrane-intrinsic subunits, Plant Physiol. Biochem. 46(3), 238-264 (2008).
- C.D.P. Duffy, L. Valkunas, and A.V. Ruban, Quan tum mechanical calculations of xanthop- hyll-chlorophyll electronic coupling in the light- harvesting antenna of photosystem I of higher plants, J. Phys. Chem. B 117(25), 7605-7614 (2013).
- J. Chmeliov, W.P. Bricker, C. Lo, E. Jouin, L. Val- kunas, A.V. Ruban, and C.D.P. Duffy, An 'all pig- ment' model of excitation quenching in LHCII, Phys. Chem. Chem. Phys. 17(24), 15857-15867 (2015).
- V. Barzda, V. Gulbinas, R. Kananavicius, V. Cer- vinskas, H. van Amerongen, R. van Grondelle, and L. Valkunas, Singlet-singlet annihilation kine- tics in aggregates and trimers of LHCII, Biophys. J. 80(5), 2409-2421 (2001).
- S. Farooq, J. Chmeliov, G. Trinkunas, L. Valkunas, and H. van Amerongen, Is there excitation energy transfer between different layers of stacked pho- tosystem-II-containing thylakoid membranes? J. Phys. Chem. Lett. 7(7), 1406-1410 (2016).
- G. Garab, Self-assembly and structural-func- tional flexibility of oxygenic photosynthetic ma- chineries: Personal perspectives, Photosynth. Res. 127, 131-150 (2016).
- N.E. Holt, D. Zigmantas, L. Valkunas, X.P. Li, K.K. Niyogi, and G.R. Fleming, Carotenoid cati- on formation and the regulation of photosynthet- ic light harvesting, Science 307(5708), 433-436 (2005).
- A.A. Pascal, Z.F. Liu, K. Broess, B. van Oort, H. van Amerongen, C. Wang, P. Horton, B. Robert, W.R. Chang, and A. Ruban, Molecular basis of photoprotection and control of photo- synthetic light-harvesting, Nature 436(7047), 134-137 (2005).
- A.V. Ruban, R. Berera, C. Ilioaia, I.H.M. van Stokkum, J.T.M. Kennis, A.A. Pascal, H. van Amerongen, B. Robert, P. Horton, and R. van Grondelle, Identification of a mechanism of pho- toprotective energy dissipation in higher plants, Nature 450(7169), 575-578 (2007).
- T.K. Ahn, T.J. Avenson, M. Ballottari, Y.C. Cheng, K.K. Niyogi, R. Bassi, and G.R. Fleming, Archi- tecture of a charge-transfer state regulating light harvesting in a plant antenna protein, Science 320(5877), 794-797 (2008).
- H. Staleva, J. Komenda, M.K. Shukla, V. Šlouf, R. Kaňa, T. Polívka, and R. Sobotka, Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins, Nat. Chem. Biol. 11(4), 287-291 (2015).
- J. Chmeliov, A. Gelzinis, E. Songaila, R. Augulis, C.D.P. Duffy, A.V. Ruban, and L. Valkunas, The nature of self-regulation in photosynthetic light- harvesting antenna, Nat. Plants 2, 16045 (2016).
- J. Chmeliov, G. Trinkunas, H. van Amerongen, and L. Valkunas, Excitation migration in fluctu- ating light-harvesting antenna systems, Photo- synth. Res. 127(1), 49-60 (2016).
- M.G. Müller, P. Lambrev, M. Reus, E. Wientjes, R. Croce, and A.R. Holzwarth, Singlet energy dis- sipation in the photosystem II light-harvesting complex does not involve energy transfer to ca- rotenoids, ChemPhysChem 11(6), 1289-1296 (2010).
- M. Mamedov, G.V. Nadtochenko, and A. Se me- nov, Primary electron transfer processes in pho- tosynthetic reaction centers from oxygenic or- ganisms, Photosynth. Res. 125, 51-63 (2015).
- D.A. Cherepanov, G.E. Milanovsky, O.A. Gopta, R. Balasubramanian, D.A. Bryant, A.Y. Semenov, and J.H. Golbeck, Electron-phonon coupling in cyanobacterial photosystem I, J. Phys. Chem. B 122, 7943-7955 (2018).
- R. Croce and H. van Amerongen, Light-harvest- ing in photosystem I, Photosynth. Res. 116(2-3), 153-166 (2013).
- I.H.M. van Stokkum, D.S. Larsen, and R. van Grondelle, Global and target analysis of time- resolved spectra, Biochim. Biophys. Acta 1657, 82-104 (2004).
- M. Brecht, V. Radics, J.B. Nieder, and R. Bittl, Protein dynamics-induced variation of excitation energy transfer pathways, Proc. Natl. Acad. Sci. U.S.A. 106(29), 11857-11861 (2009).
- T.P.J. Krüger, E. Wientjes, R. Croce, and R. van Grondelle, Conformational switching explains the intrinsic multifunctionality of plant light-har- vesting complexes, Proc. Natl. Acad. Sci. U.S.A. 108(33), 13516-13521 (2011).
- T.P.J. Krüger, V.I. Novoderezkhin, C. Ilioaia, and R. van Grondelle, Fluorescence spectral dynam- ics of single LHCII trimers, Biophys. J. 98(12), 3093-3101 (2010).
- I. Caspy and N. Nelson, Structure of the plant photosystem I, Biochem. Soc. Trans. 46, 285-294 (2018).
- S. Vaitekonis, G. Trinkunas, and L. Valkunas, Red chlorophylls in the exciton model of photosys- tem I, Photosynth. Res. 86, 185-201 (2005).
- M.K. Sener, C. Jolley, A. Ben-Shem, P. Fromme, N. Nelson, R. Croce, and K. Schulten, Comparison of the light-harvesting networks of plant and cy- anobacterial photosystem I, Biophys. J. 89, 1630- 1642 (2005).
- E. Wientjes, I.H.M. van Stokkum, H. van Amerongen, and R. Croce, The role of the indi- vidual Lhcas in photosystem I excitation energy trapping, Biophys. J. 101(3), 745-754 (2011).
- E. Wientjes, H. van Amerongen, and R. Croce, LHCII is an antenna of both photosystems after long-term acclimation, Biochim. Biophys. Acta Bioenerg. 1827(3), 420-426 (2013).
- E. Molotokaite, W. Remelli, A.P. Casazza, G. Zu- cchel li, D. Polli, G. Cerullo, and S. Santabarbara, Trapping dynamics in photosystem I-light har- vesting complex I of higher plants is governed by the competition between excited state diffusion from low energy states and photochemical charge separation, J. Phys. Chem. B 121, 9816-9830 (2017).
- T.P. Causgrove, S. Yang, and W.S. Struve, Polarized pump-probe spectroscopy of photosystem I an- tenna excitation transport, J. Phys. Chem. 93(18), 6844-6850 (1989).
- S. Savikhin, W. Xu, P.R. Chitnis, and W.S. Struve, Ultrafast primary processes in PSI from Syne- chocystis sp. PCC 6803: Roles of P700 and A(0), Biophys. J. 79, 1573-1586 (2000).
- C. Slavov, M. Ballottari, T. Morosinotto, R. Bassi, and A.R. Holzwarth, Trap-limited charge separa- tion kinetics in higher plant photosystem I com- plexes, Biophys. J. 94, 3601-3612 (2008).
- B. van Oort, M. Alberts, S. de Bianchi, L. Dall'Os- to, R. Bassi, G. Trinkunas, R. Croce, and H. van Amerongen, Effect of antenna-depletion in photo system II on excitation energy transfer in Arabidopsis thaliana, Biophys. J. 98(5), 922-931 (2010).
- R.C. Jennings, G. Zucchelli, R. Croce, and F.M. Garlaschi, The photochemical trapping rate from red spectral states in PSI-LHCI is de- termined by thermal activation of energy trans- fer to bulk chlorophylls, Biochim. Biophys. Acta Bioenerg. 1557, 91-98 (2003).
- S. Vassiliev, C.-I. Lee, G.W. Brudvig, and D. Bruce, Structure-based kinetic modeling of excited-state transfer and trapping in histidine-tagged pho- tosystem II core complexes from Synechocystis, Biochemistry 41(40), 12236-12243 (2002).
- E.G. Andrizhiyevskaya, D. Frolov, R. van Gron- delle, and J.P. Dekker, On the role of the CP47 core antenna in the energy transfer and trapping dynamics of photosystem II, Phys. Chem. Chem. Phys. 6(20), 4810-4819 (2004).
- M.L. Groot, N.P. Pawlowicz, L.J.G.W. van Wilderen, J. Breton, I.H.M. van Stokkum, and R. van Grondelle, Initial electron donor and ac- ceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectrosco- py, Proc. Natl. Acad. Sci. U.S.A. 102(37), 13087- 13092 (2005).
- Y. Miloslavina, M. Szczepaniak, M.G. Müller, J. Sander, M. Nowaczyk, M. Rögner, and A.R. Holzwarth, Charge separation kinetics in in- tact photosystem II core particles is trap-limited. A picosecond fluorescence study, Biochemistry 45(7), 2436-2442 (2006).
- K. Broess, G. Trinkunas, A. van Hoek, R. Croce, and H. van Amerongen, Determination of the ex- citation migration time in photosystem II -con- sequences for the membrane organization and charge separation parameters, Biochim. Biophys. Acta Bioenerg. 1777(5), 404-409 (2008).
- K. Amarnath, D.I.G. Bennett, A.R. Schneider, and G.R. Fleming, Multiscale model of light har- vesting by photosystem II in plants, Proc. Natl. Acad. Sci. U.S.A. 113, 1156-1161 (2016).
- D.I.G. Bennett, G.R. Fleming, and K. Amarnath, Energy-dependent quenching adjusts the excita- tion diffusion length to regulate photosynthetic light harvesting, Proc. Natl. Acad. Sci. U.S.A. 115, E9523-E9531 (2018).
- C.D. van der Weij-de Wit, J.P. Dekker, R. van Grondelle, and I.H.M. van Stokkum, Charge sep- aration is virtually irreversible in photosystem II core complexes with oxidized primary quinone acceptor, J. Phys. Chem. A 115(16), 3947-3956 (2011).