Academia.eduAcademia.edu

Outline

Some new tests for multivariate normality

1991, Probability Theory and Related Fields

References (37)

  1. Alexander, K.S.: The central limit theorem for empirical processes on Vapnik-Cervonenkis classes. Ann. Probab. !5, 178 203 (1987)
  2. Anderson, T.W., Stephens, M.A.: Tests for randomness of directions against equatorial and bimodal alternatives. Biometrika 59, 613 621 (1972)
  3. Andrews, D.W.K.: Chi-square diagnostic tests for econometric models: introduction and appli- cations. J. Econ. 37, 135 156 (1988)
  4. Barndorff-Nielsen, O.: Information and exponential families in statistical theory. New York: Wiley 1978
  5. Bera, A., John, S.: Tests for multivariate normality with Pearson alternatives. Commun. Stat. Theory Methods A12, 103-117 (1983)
  6. Beran, R.J.: Testing for uniformity on a compact homogeneous space. J. Appl. Probab. 5, 177-195 (1968)
  7. Brown, L.D.: Fundamentals of statistical exponential families. Inst. of Math. Statist. Lecture Notes -Monograph Series 9 (1986)
  8. Chernoff, H., Lehmann, E.L.: The use of maximum likelihood estimates in Z 2 tests for goodness of fit. Ann. Math. Statist. 25, 579-586 (1954)
  9. Cstrgt, Sandor: Testing for normality in arbitrary dimension. Ann. Statist. 14, 708-723 (1986) Dieudonnt, J.: Foundations of modern analysis. New York: Academic Press 1960
  10. Dudley, R.M. : On )~z tests of composite hypotheses. Probability Theory, Banach Center Publica- tions 5, 75 87. Warsaw: PWN 1979
  11. Dudley, R.M. : A course on empirical processes. In: Hennequin, P.L. (ed.) Ecole d'tt6 de probabi- litts de St.-Flour, 1982. (Lect. Notes Math., vol. 1097, pp. vii viii, 1-142) Berlin Heidelberg New York: Springer 1984
  12. Dudley, R.M.: An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions. Probability in Banach Spaces V (Proc. Conf. Medford, 1984; Lect. Notes Math., vol. 1153, pp. 141-178) Berlin Heidelberg New York Tokyo: Springer 1985
  13. Dudley, R.M.: Universal Donsker classes and metric entropy. Ann. Probab. 15, 1306-1326 (1987)
  14. Dudley, R.M., Philipp, W.: Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 62, 509 552 (1983)
  15. Dzhaparidze, K.O., Nikulin, M.S.: On a modification of the standard statistics of Pearson. Theory Probab. Appl. 19, 851 853 (1974)
  16. Fernholz, L.T.: von Mises calculus for statistical functionals. (Lect. Notes Statist., vol. 19) Berlin Heidelberg New York: Springer 1983
  17. Gint, E.: Invariant tests for uniformity on compact Riemannian manifolds based on Sobolev norms. Ann. Statist. 3, 1243-1266 (1975)
  18. Holt, R.: Computation of gamma and beta tail probabilities. Mathematics Dept., Massachusetts Institut of Technology 1986
  19. Huber, P.J.: The behavior of maximum likelihood estimates under nonstandard conditions. In: Proc. 5th Berkeley Syrup. Math. Statist. Prob. 1965, vol. 1, pp. 221-233. Berkeley Los Angeles: University of California Press 1967
  20. Joiner, B.L., Rosenblatt, J.R.: Some properties of the range in samples from Tukey's symmetric lambda distributions. J. Am. Statist. Assoc. 66, 394-399 (1971)
  21. Koziol, J.A.: On assessing multivariate normality. J. R. Stat. Soc., Ser. B45, 358-361 (1983)
  22. Lehmann, E.L.: Testing statistical hypotheses, 2d edn. New York: Wiley 1986
  23. Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications. Biometrika 57, 519-530 (1970)
  24. Moore, D.S.: A chi-square statistic with random cell boundaries. Ann. Math. Statist. 42, 147-156 (1971)
  25. Moore, D.S., Stubblebine, J.B.: Chi-square tests for multivariate normality with application to common stock prices. Commun. Stat. Theory Methods A10, 713-738 (1981)
  26. Mfiller, C.: Spherical harmonics (Lect. Notes Math., vol. 17). Berlin Heidelberg New York: Springer 1966
  27. Pollard, D.: General chi-square goodness-of-fit tests with data-dependent cells. Z. Wahrschein- lichkeitstheor. Verw. Geb. 50, 317-331 (1979)
  28. Pollard, D.: A central limit theorem for empirical processes. J. Aust. Math. Soc. Set. A33, 235248 (1982)
  29. Pollard, D.: Convergence of stochastic processes. New York Berlin Heidelberg: Springer 1984
  30. Prentice, M.J.: On invariant tests of uniformity for directions and orientations. Ann. Statist. 6, 169 176 (1978)
  31. Quiroz, A.J.: On Donsker classes of functions and their application to tests for goodness of fit. Ph. D. thesis, mathematics, Mass. Inst. of Tech. (1986)
  32. Rao, K.C., Robson, D.S.: A chi-square statistic for goodness-of-fit tests within the exponential family. Comm. Statist. 3, 1139-1153 (1974)
  33. Roy, A.R. : On Z 2 statistics with variable intervals. Technical Report no. i, Dept. of Statistics, Stanford University (1956)
  34. Small, N.J.H. : Plotting squared radii. Biometrika 68, 657-658 (1978)
  35. Stein, E.M., Weiss, G. : Introduction to Fourier analysis on Euclidean Spaces. Princeton: Prince- ton University Press 1971
  36. Watson, G.S.: On chi-square goodness of-fit tests for continuous distributions. J. R. Star. Soc., Ser. B20, 44-61, with discussion 61 72 (1958)
  37. Wenocur, R.S., Dudley, R.M.: Some special Vapnik-Chervonenkis classes. Discrete Math. 33, 313-318 (1981)