Hole spin relaxation in Ge–Si core–shell nanowire qubits
2011, Nature Nanotechnology
https://doi.org/10.1038/NNANO.2011.234Abstract
Controlling decoherence is the most challenging task in realizing quantum information hardware 1-3 . Single electron spins in gallium arsenide are a leading candidate among solidstate implementations, however strong coupling to nuclear spins in the substrate hinders this approach 4-6 . To realize spin qubits in a nuclear-spin-free system, intensive studies based on group-IV semiconductor are being pursued. In this case, the challenge is primarily control of materials and interfaces, and device nanofabrication. We report important steps toward implementing spin qubits in a predominantly nuclear-spin-free system by demonstrating state preparation, pulsed gate control, and charge-sensing spin readout of confined hole spins in a one-dimensional Ge/Si nanowire. With fast gating, we measure T 1 spin relaxation times in coupled quantum dots approaching 1 ms, increasing with lower magnetic field, consistent with a spin-orbit mechanism that is usually masked by hyperfine contributions. Since Loss and DiVincenzo's proposal 1 , the promise of quantum dots for solid state quantum computation has been underscored by the successful initialization, manipulation and readout of electron spins in GaAs systems 5,7-9 . The electronic wave functions in these systems typically overlap with a large number of nuclear spins that are difficult to control and in most cases thermally randomized. The resulting intrinsic spin decoherence rates 4-6 have been successfully reduced by spin-echo techniques 6,10 but require complex gate sequences that complicate multiqubit operations 11 . The prospect of achieving long coherence times in group IV materials with
References (37)
- Loss, D. & Divincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120-126 (1998).
- Hanson, R. & Awschalom, D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043-1049 (2008).
- Petta, J. R., Lu, H. & Gossard, A. C. A coherent beam splitter for electronic spin states. Science 327, 669-672 (2010).
- Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).
- Johnson, A. et al. Triplet-singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925-928 (2005).
- Petta, J. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180-2184 (2005).
- Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431-435 (2004).
- Koppens, F., Buizert, C., Tielrooij, K. & Vink, I. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766-771 (2006).
- 9 Nowack, K., Koppens, F. & Nazarov, Y. Coherent control of a single electron spin with electric fields. Science 318, 1430-1433 (2007).
- Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 us. Nature Phys. 7, 109-113 (2011).
- Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Phys. 5, 903-908 (2009).
- Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nature Phys. 3, 192-196 (2007).
- Kloeffel, C., Trif, M. & Loss, D. Strong Spin-Orbit Interaction and Helical Hole States in Ge/Si Nanowires. arXiv:1107.4870v1 (2011).
- Mason, N., Biercuk, M. & Marcus, C. Local gate control of a carbon nanotube double quantum dot. Science 303, 655-658 (2004).
- Hu, Y. et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nature Nanotechnol. 2, 622-625 (2007).
- Steele, G. A., Gotz, G. & Kouwenhoven, L. P. Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes. Nature Nanotechnol. 4, 363- 367 (2009).
- Shaji, N. et al. Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot. Nature Phys. 4, 540-544 (2008).
- Katsaros, G. et al. Hybrid superconductor-semiconductor devices made from self- assembled SiGe nanocrystals on silicon. Nature Nanotechnol. 5, 458-464 (2010).
- Zwanenburg, F. A., van Rijmenam, C., Fang, Y., Lieber, C. M. & Kouwenhoven, L. P. Spin states of the first four holes in a silicon nanowire quantum dot. Nano Lett. 9, 1071- 1079 (2009).
- Xiao, M., House, M. G. & Jiang, H. W. Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum Dot. Phys. Rev. Lett. 104, 096801 (2010).
- Simmons, C. S., C. B. et al. Tunable Spin Loading and T(1) of a Silicon Spin Qubit Measured by Single-Shot Readout. Phys. Rev. Lett. 106, 156804 (2011).
- Hayes, R. R. et al. Lifetime measurements (T1) of electron spins in Si/SiGe quantum dots. arXiv:0908.0173v1 (2009).
- Borselli, M. G. et al. Pauli spin blockade in undoped Si/SiGe two-electron quantum dots. Appl. Phys. Lett. 99, 063109-063112 (2011).
- Hanson, R., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217-1265 (2007).
- Lieber, C. & Wang, Z. Functional nanowires. MRS Bull. 32, 99-108 (2007).
- Lu, W., Xiang, J., Timko, B., Wu, Y. & Lieber, C. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. USA 102, 10046- 10051 (2005).
- Zulicke, U. & Csontos, D. Zeeman splitting in cylindrical hole quantum wires. Curr. Appl. Phys. 8, 237-240 (2008).
- Nenashev, A. V., Dvurechenskii, A. V. & Zinovieva, A. F. Wave functions and g factor of holes in Ge/Si quantum dots. Phys. Rev. B 67, 205301 (2003).
- Zhong, Z. H., Fang, Y., Lu, W. & Lieber, C. M. Coherent single charge transport in molecular-scale silicon nanowires. Nano Lett. 5, 1143-1146 (2005).
- Roddaro, S. et al. Spin states of holes in Ge/Si nanowire quantum dots. Phys. Rev. Lett. 101, 186802 (2008).
- Trif, M., Simon, P. & Loss, D. Relaxation of hole spins in quantum dots via two-phonon processes. Phys. Rev. Lett. 103, 106601 (2009).
- Levitov, L. S. & Rashba, E. I. Dynamical spin-electric coupling in a quantum dot. Phys. Rev. B 67, 115324 (2003).
- Shankar, S., Tyryshkin, A., He, J. & Lyon, S. Spin relaxation and coherence times for electrons at the Si/SiO2 interface. Phys. Rev. B 82, 195323 (2010).
- Winkler, R. in Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems Vol. 191 Springer Tracts in Modern Physics Ch. 3, 28 (Springer-Verlag Berlin, 2003).
- Hao, X. J. et al. Strong and Tunable Spin-Orbit Coupling of One-Dimensional Holes in Ge/Si Core/Shell Nanowires. Nano Lett. 10, 2956-2960 (2010).
- Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin-orbit qubit in a semiconductor nanowire. Nature 468, 1084-1087 (2010).
- Tang, J.-M., Levy, J. & Flatté, M. E. All-Electrical Control of Single Ion Spins in a Semiconductor. Phys. Rev. Lett. 97, 106803 (2006).