Academia.eduAcademia.edu

Outline

Spectral properties of the overlap Dirac operator in QCD

2003, Journal of High Energy Physics

https://doi.org/10.1088/1126-6708/2003/07/033

Abstract

We discuss the eigenvalue distribution of the overlap Dirac operator in quenched QCD on lattices of size 8 4 , 10 4 and 12 4 at β = 5.85 and β = 6. We distinguish the topological sectors and study the distributions of the leading non-zero eigenvalues, which are stereographically mapped onto the imaginary axis. Thus they can be compared to the predictions of random matrix theory applied to the ǫ-expansion of chiral perturbation theory. We find a satisfactory agreement, if the physical volume exceeds about (1.2 fm) 4 . For the unfolded level spacing distribution we find an accurate agreement with the random matrix conjecture on all volumes that we considered.

References (43)

  1. J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B 184 (1987) 83; Thermodynamics of chiral symmetry, Phys. Lett. B 188 (1987) 477.
  2. H. Leutwyler and A. Smilga, Spectrum of Dirac operator and role of winding number in QCD, Phys. Rev. D 46 (1992) 5607.
  3. A. Hasenfratz, K. Jansen, J. Jersák, C.B. Lang, H. Leutwyler and T. Neuhaus, Finite size effects and spontaneously broken symmetries: the case of the O(4) model, Z. Physik C 46 (1990) 257;
  4. A. Hasenfratz, K. Jansen, J. Jersák, H.A. Kastrup, C.B. Lang, H. Leutwyler and T. Neuhaus, Goldstone bosons and finite size effects: a numerical study of the O(4) model, Nucl. Phys. B 356 (1991) 332.
  5. P. Hernández, K. Jansen and L. Lellouch, Finite-size scaling of the quark condensate in quenched lattice QCD, Phys. Lett. B 469 (1999) 198 [hep-lat/9907022].
  6. P.H. Ginsparg and K.G. Wilson, A remnant of chiral symmetry on the lattice, Phys. Rev. D 25 (1982) 2649. JHEP07(2003)033
  7. P. Hasenfratz, V. Laliena and F. Niedermayer, The index theorem in QCD with a finite cut-off, Phys. Lett. B 427 (1998) 125 [hep-lat/9801021];
  8. P. Hasenfratz, Lattice QCD without tuning, mixing and current renormalization, Nucl. Phys. B 525 (1998) 401 [hep-lat/9802007].
  9. M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett. B 428 (1998) 342 [hep-lat/9802011].
  10. M.F. Atiyah and I.M. Singer, Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci. 81 (1984) 2597.
  11. H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417 (1998) 141 [hep-lat/9707022]; More about exactly massless quarks on the lattice, Phys. Lett. B 427 (1998) 353 [hep-lat/9801031].
  12. P. Hernández, K. Jansen and M. Lüscher, Locality properties of Neuberger's lattice Dirac operator, Nucl. Phys. B 552 (1999) 363 [hep-lat/9808010].
  13. C.W. Bernard and M.F.L. Golterman, Chiral perturbation theory for the quenched approximation of QCD, Phys. Rev. D 46 (1992) 853 [hep-lat/9204007];
  14. P.H. Damgaard, M.C. Diamantini, P. Hernández and K. Jansen, Finite-size scaling of meson propagators, Nucl. Phys. B 629 (2002) 445 [hep-lat/0112016];
  15. P.H. Damgaard, P. Hernández, K. Jansen, M. Laine and L. Lellouch, Finite-size scaling of vector and axial current correlators, Nucl. Phys. B 656 (2003) 226 [hep-lat/0211020].
  16. J.J.M. Verbaarschot and T. Wettig, Random matrix theory and chiral symmetry in QCD, Ann. Rev. Nucl. Part. Sci. 50 (2000) 343 [hep-ph/0003017].
  17. J.J.M. Verbaarschot and I. Zahed, Spectral density of the QCD Dirac operator near zero virtuality, Phys. Rev. Lett. 70 (1993) 3852 [hep-th/9303012];
  18. G. Akemann, P.H. Damgaard, U. Magnea and S. Nishigaki, Universality of random matrices in the microscopic limit and the Dirac operator spectrum, Nucl. Phys. B 487 (1997) 721 [hep-th/9609174];
  19. P.H. Damgaard, Dirac operator spectra from finite-volume partition functions, Phys. Lett. B 424 (1998) 322 [hep-th/9711110]; Topology and the Dirac operator spectrum in finite-volume gauge theories, Nucl. Phys. B 556 (1999) 327 [hep-th/9903096];
  20. G. Akemann and P.H. Damgaard, Microscopic spectra of Dirac operators and finite-volume partition functions, Nucl. Phys. B 528 (1998) 411 [hep-th/9801133];
  21. J.C. Osborn, D. Toublan and J.J.M. Verbaarschot, From chiral random matrix theory to chiral perturbation theory, Nucl. Phys. B 540 (1999) 317 [hep-th/9806110];
  22. P.H. Damgaard, J.C. Osborn, D. Toublan and J.J.M. Verbaarschot, The microscopic spectral density of the QCD Dirac operator, Nucl. Phys. B 547 (1999) 305 [hep-th/9811212].
  23. P.H. Damgaard and S.M. Nishigaki, Universal spectral correlators and massive Dirac operators, Nucl. Phys. B 518 (1998) 495 [hep-th/9711023]; Distribution of the k-th smallest Dirac operator eigenvalue, Phys. Rev. D 63 (2001) 045012 [hep-th/0006111];
  24. T. Wilke, T. Guhr and T. Wettig, The microscopic spectrum of the QCD Dirac operator with finite quark masses, Phys. Rev. D 57 (1998) 6486 [hep-th/9711057];
  25. S.M. Nishigaki, P.H. Damgaard and T. Wettig, Smallest Dirac eigenvalue distribution from random matrix theory, Phys. Rev. D 58 (1998) 087704 [hep-th/9803007].
  26. P.H. Damgaard, Quenched finite volume logarithms, Nucl. Phys. B 608 (2001) 162 [hep-lat/0105010].
  27. JHEP07(2003)033
  28. P.H. Damgaard, U.M. Heller, R. Niclasen and K. Rummukainen, Looking for effects of topology in the Dirac spectrum of staggered fermions, Nucl. Phys. 83 (Proc. Suppl.) (2000) 197 [hep-lat/9909017]; Staggered fermions and gauge field topology, Phys. Rev. D 61 (2000) 014501 [hep-lat/9907019];
  29. B.A. Berg, H. Markum, R. Pullirsch and T. Wettig, Spectrum of the U(1) staggered Dirac operator in four dimensions, Phys. Rev. D 63 (2001) 014504 [hep-lat/0007009].
  30. F. Farchioni, I. Hip, C.B. Lang and M. Wohlgenannt, Eigenvalue spectrum of massless Dirac operators on the lattice, Nucl. Phys. B 549 (1999) 364 [hep-lat/9812018].
  31. B.A. Berg, U.M. Heller, H. Markum, R. Pullirsch and W. Sakuler, Exact zero-modes of the compact QED Dirac operator, Phys. Lett. B 514 (2001) 97 [hep-lat/0103022].
  32. R.G. Edwards, U.M. Heller, J.E. Kiskis and R. Narayanan, Quark spectra, topology and random matrix theory, Phys. Rev. Lett. 82 (1999) 4188 [hep-th/9902117].
  33. P. Hasenfratz, S. Hauswirth, T. Jörg, F. Niedermayer and K. Holland, Testing the fixed-point QCD action and the construction of chiral currents, Nucl. Phys. B 643 (2002) 280 [hep-lat/0205010].
  34. K. Splittorff, Logarithmic universality in random matrix theory, Nucl. Phys. B 548 (1999) 613 [hep-th/9810248].
  35. W. Bietenholz, Solutions of the Ginsparg-Wilson relation and improved domain wall fermions, Eur. Phys. J. C 6 (1999) 537 [hep-lat/9803023];
  36. W. Bietenholz and I. Hip, The scaling of exact and approximate Ginsparg-Wilson fermions, Nucl. Phys. B 570 (2000) 423 [hep-lat/9902019].
  37. F. Farchioni, Leutwyler-Smilga sum rules for Ginsparg-Wilson lattice fermions, hep-lat/9902029.
  38. W. Bietenholz, Approximate Ginsparg-Wilson fermions for QCD, in proceedings of the International workshop on non-perturbative methods and lattice QCD, Guangzhou (China), World Scientific 2001 p. 3 [hep-lat/0007017].
  39. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes, Cambridge University Press, Cambridge 1992.
  40. ALPHA collaboration, M. Guagnelli, R. Sommer and H. Wittig, Precision computation of a low-energy reference scale in quenched lattice QCD, Nucl. Phys. B 535 (1998) 389 [hep-lat/9806005].
  41. C.E. Porter, Statistical theories of spectra: fluctuations, Academic Press 1965; O. Bohigas and M.-J. Giannoni, in Mathematical computational methods in nuclear physics, Springer Verlag, Berlin 1984.
  42. L. Giusti, C. Hoelbling, M. Lüscher and H. Wittig, Numerical techniques for lattice QCD in the ǫ-regime, Comput. Phys. Commun. 153 (2003) 31 [hep-lat/0212012].
  43. W. Bietenholz, Convergence rate and locality of improved overlap fermions, Nucl. Phys. B 644 (2002) 223 [hep-lat/0204016].