Spectral properties of the overlap Dirac operator in QCD
2003, Journal of High Energy Physics
https://doi.org/10.1088/1126-6708/2003/07/033Abstract
We discuss the eigenvalue distribution of the overlap Dirac operator in quenched QCD on lattices of size 8 4 , 10 4 and 12 4 at β = 5.85 and β = 6. We distinguish the topological sectors and study the distributions of the leading non-zero eigenvalues, which are stereographically mapped onto the imaginary axis. Thus they can be compared to the predictions of random matrix theory applied to the ǫ-expansion of chiral perturbation theory. We find a satisfactory agreement, if the physical volume exceeds about (1.2 fm) 4 . For the unfolded level spacing distribution we find an accurate agreement with the random matrix conjecture on all volumes that we considered.
References (43)
- J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B 184 (1987) 83; Thermodynamics of chiral symmetry, Phys. Lett. B 188 (1987) 477.
- H. Leutwyler and A. Smilga, Spectrum of Dirac operator and role of winding number in QCD, Phys. Rev. D 46 (1992) 5607.
- A. Hasenfratz, K. Jansen, J. Jersák, C.B. Lang, H. Leutwyler and T. Neuhaus, Finite size effects and spontaneously broken symmetries: the case of the O(4) model, Z. Physik C 46 (1990) 257;
- A. Hasenfratz, K. Jansen, J. Jersák, H.A. Kastrup, C.B. Lang, H. Leutwyler and T. Neuhaus, Goldstone bosons and finite size effects: a numerical study of the O(4) model, Nucl. Phys. B 356 (1991) 332.
- P. Hernández, K. Jansen and L. Lellouch, Finite-size scaling of the quark condensate in quenched lattice QCD, Phys. Lett. B 469 (1999) 198 [hep-lat/9907022].
- P.H. Ginsparg and K.G. Wilson, A remnant of chiral symmetry on the lattice, Phys. Rev. D 25 (1982) 2649. JHEP07(2003)033
- P. Hasenfratz, V. Laliena and F. Niedermayer, The index theorem in QCD with a finite cut-off, Phys. Lett. B 427 (1998) 125 [hep-lat/9801021];
- P. Hasenfratz, Lattice QCD without tuning, mixing and current renormalization, Nucl. Phys. B 525 (1998) 401 [hep-lat/9802007].
- M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett. B 428 (1998) 342 [hep-lat/9802011].
- M.F. Atiyah and I.M. Singer, Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci. 81 (1984) 2597.
- H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417 (1998) 141 [hep-lat/9707022]; More about exactly massless quarks on the lattice, Phys. Lett. B 427 (1998) 353 [hep-lat/9801031].
- P. Hernández, K. Jansen and M. Lüscher, Locality properties of Neuberger's lattice Dirac operator, Nucl. Phys. B 552 (1999) 363 [hep-lat/9808010].
- C.W. Bernard and M.F.L. Golterman, Chiral perturbation theory for the quenched approximation of QCD, Phys. Rev. D 46 (1992) 853 [hep-lat/9204007];
- P.H. Damgaard, M.C. Diamantini, P. Hernández and K. Jansen, Finite-size scaling of meson propagators, Nucl. Phys. B 629 (2002) 445 [hep-lat/0112016];
- P.H. Damgaard, P. Hernández, K. Jansen, M. Laine and L. Lellouch, Finite-size scaling of vector and axial current correlators, Nucl. Phys. B 656 (2003) 226 [hep-lat/0211020].
- J.J.M. Verbaarschot and T. Wettig, Random matrix theory and chiral symmetry in QCD, Ann. Rev. Nucl. Part. Sci. 50 (2000) 343 [hep-ph/0003017].
- J.J.M. Verbaarschot and I. Zahed, Spectral density of the QCD Dirac operator near zero virtuality, Phys. Rev. Lett. 70 (1993) 3852 [hep-th/9303012];
- G. Akemann, P.H. Damgaard, U. Magnea and S. Nishigaki, Universality of random matrices in the microscopic limit and the Dirac operator spectrum, Nucl. Phys. B 487 (1997) 721 [hep-th/9609174];
- P.H. Damgaard, Dirac operator spectra from finite-volume partition functions, Phys. Lett. B 424 (1998) 322 [hep-th/9711110]; Topology and the Dirac operator spectrum in finite-volume gauge theories, Nucl. Phys. B 556 (1999) 327 [hep-th/9903096];
- G. Akemann and P.H. Damgaard, Microscopic spectra of Dirac operators and finite-volume partition functions, Nucl. Phys. B 528 (1998) 411 [hep-th/9801133];
- J.C. Osborn, D. Toublan and J.J.M. Verbaarschot, From chiral random matrix theory to chiral perturbation theory, Nucl. Phys. B 540 (1999) 317 [hep-th/9806110];
- P.H. Damgaard, J.C. Osborn, D. Toublan and J.J.M. Verbaarschot, The microscopic spectral density of the QCD Dirac operator, Nucl. Phys. B 547 (1999) 305 [hep-th/9811212].
- P.H. Damgaard and S.M. Nishigaki, Universal spectral correlators and massive Dirac operators, Nucl. Phys. B 518 (1998) 495 [hep-th/9711023]; Distribution of the k-th smallest Dirac operator eigenvalue, Phys. Rev. D 63 (2001) 045012 [hep-th/0006111];
- T. Wilke, T. Guhr and T. Wettig, The microscopic spectrum of the QCD Dirac operator with finite quark masses, Phys. Rev. D 57 (1998) 6486 [hep-th/9711057];
- S.M. Nishigaki, P.H. Damgaard and T. Wettig, Smallest Dirac eigenvalue distribution from random matrix theory, Phys. Rev. D 58 (1998) 087704 [hep-th/9803007].
- P.H. Damgaard, Quenched finite volume logarithms, Nucl. Phys. B 608 (2001) 162 [hep-lat/0105010].
- JHEP07(2003)033
- P.H. Damgaard, U.M. Heller, R. Niclasen and K. Rummukainen, Looking for effects of topology in the Dirac spectrum of staggered fermions, Nucl. Phys. 83 (Proc. Suppl.) (2000) 197 [hep-lat/9909017]; Staggered fermions and gauge field topology, Phys. Rev. D 61 (2000) 014501 [hep-lat/9907019];
- B.A. Berg, H. Markum, R. Pullirsch and T. Wettig, Spectrum of the U(1) staggered Dirac operator in four dimensions, Phys. Rev. D 63 (2001) 014504 [hep-lat/0007009].
- F. Farchioni, I. Hip, C.B. Lang and M. Wohlgenannt, Eigenvalue spectrum of massless Dirac operators on the lattice, Nucl. Phys. B 549 (1999) 364 [hep-lat/9812018].
- B.A. Berg, U.M. Heller, H. Markum, R. Pullirsch and W. Sakuler, Exact zero-modes of the compact QED Dirac operator, Phys. Lett. B 514 (2001) 97 [hep-lat/0103022].
- R.G. Edwards, U.M. Heller, J.E. Kiskis and R. Narayanan, Quark spectra, topology and random matrix theory, Phys. Rev. Lett. 82 (1999) 4188 [hep-th/9902117].
- P. Hasenfratz, S. Hauswirth, T. Jörg, F. Niedermayer and K. Holland, Testing the fixed-point QCD action and the construction of chiral currents, Nucl. Phys. B 643 (2002) 280 [hep-lat/0205010].
- K. Splittorff, Logarithmic universality in random matrix theory, Nucl. Phys. B 548 (1999) 613 [hep-th/9810248].
- W. Bietenholz, Solutions of the Ginsparg-Wilson relation and improved domain wall fermions, Eur. Phys. J. C 6 (1999) 537 [hep-lat/9803023];
- W. Bietenholz and I. Hip, The scaling of exact and approximate Ginsparg-Wilson fermions, Nucl. Phys. B 570 (2000) 423 [hep-lat/9902019].
- F. Farchioni, Leutwyler-Smilga sum rules for Ginsparg-Wilson lattice fermions, hep-lat/9902029.
- W. Bietenholz, Approximate Ginsparg-Wilson fermions for QCD, in proceedings of the International workshop on non-perturbative methods and lattice QCD, Guangzhou (China), World Scientific 2001 p. 3 [hep-lat/0007017].
- W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes, Cambridge University Press, Cambridge 1992.
- ALPHA collaboration, M. Guagnelli, R. Sommer and H. Wittig, Precision computation of a low-energy reference scale in quenched lattice QCD, Nucl. Phys. B 535 (1998) 389 [hep-lat/9806005].
- C.E. Porter, Statistical theories of spectra: fluctuations, Academic Press 1965; O. Bohigas and M.-J. Giannoni, in Mathematical computational methods in nuclear physics, Springer Verlag, Berlin 1984.
- L. Giusti, C. Hoelbling, M. Lüscher and H. Wittig, Numerical techniques for lattice QCD in the ǫ-regime, Comput. Phys. Commun. 153 (2003) 31 [hep-lat/0212012].
- W. Bietenholz, Convergence rate and locality of improved overlap fermions, Nucl. Phys. B 644 (2002) 223 [hep-lat/0204016].