Academia.eduAcademia.edu

Outline

Dust Distribution in the Β Pictoris Circumstellar Disks

2009, The Astrophysical Journal

https://doi.org/10.1088/0004-637X/705/1/529

Abstract

We present 3-D models of dust distribution around β Pictoris that produce the best fits to the Hubble Space Telescope Advanced Camera for Surveys' (HST/ACS) images obtained by Golimowski and co-workers. We allow for the presence of either one or two separate axisymmetric dust disks. The density models are analytical, radial two-power-laws joined smoothly at a cross-over radius with density exponentially decreasing away from the mid-plane of the disks. Two-disk models match the data best, yielding a reduced χ 2 of ∼1.2. Our two-disk model reproduces many of the asymmetries reported in the literature and suggests that it is the secondary (tilted) disk which is largely responsible for them. Our model suggests that the secondary disk is not constrained to the inner regions of the system (extending out to at least 250 AU) and that it has a slightly larger total area of dust than the primary, as a result of slower fall-off of density with radius and height. This surprising result raises many questions about the origin and dynamics of such a pair of disks. The disks overlap, but can coexist owing to their low optical depths and therefore long mean collision times. We find that the two disks have dust replenishment times on the order of 10 4 yr at ∼100 AU, hinting at the presence of planetesimals that are responsible for the production of 2 nd generation dust. A plausible conjecture, which needs to be confirmed by physical modeling of the collisional dynamics of bodies in the disks, is that the two observed disks are derived from underlying planetesimal disks; such disks would be anchored by the gravitational influence of planets located at less than 70 AU from β Pic that are themselves in slightly inclined orbits.

References (27)

  1. Artymowicz, P., Burrows, C., Paresce, F., 1989, ApJ, 337, 494
  2. Artymowicz, P., 1997, Annu. Rev. Earth Planet. Sci., 25, 175
  3. Aumann, H.H., et al. 1984, ApJ, 278, L23
  4. Aumann, H.H., 1985, PASP, 97, 885
  5. Crifo, F., Vidal-Madjar, A., Lallement, R., Ferlet, R., Gerbaldi, M., 1997, Astron. Astrophys., 320, 29
  6. Crifo, F., Vidal-Madjar, A., Lallement, R., Ferlet, R., Gerbaldi, M., 1997, Astron. Astrophys., 320, 29
  7. Croll, B. 2006, PASP, 118, 1351
  8. Ford, E.B. 2005, AJ, 129, 1706
  9. Gelman, A., Rubin, D.B. 1992, Statistical Science, 7(4), 457
  10. Gillet. F., 1986, in Light on Dark Matter, edited by F.P. Israel (Reidel Dordrecht), p. 61
  11. Golimowski, D. A., Durrance, S. T., & Clampin, M. 1993, ApJ, 411, L41
  12. Golimowski, D. A., et al. 2006, AJ, 131, 3109
  13. Grigorieva, A., Artymowicz, P, & Thebault, Ph. 2007, A&A, 461, 537
  14. Heap, S. R., Lindler, D. J., Lanz, T. M., Cornett, R. H., Hubeny, I., Maran, S. P., & Woodgate, B. 2000, ApJ, 539, 435
  15. Henyey, L. G., & Greenstein, J. L. 1941, ApJ, 93, 70
  16. Kalas, P., & Jewitt, D. 1995, AJ, 110, 794
  17. Lagrange, A. M., Buckman, D., Artymowicz, P., 2000, Protostars and Planets IV, 639
  18. Lagrange, A. M., et al. 2009, A&A, 493, L21
  19. Lecavelier Des Etangs, A., et al. 1993, A&A, 274, 877
  20. Leinert, C., Link, H., Pitz, E., & Giese, R. H. 1976, A&A, 47, 221
  21. Mouillet, D., Larwood, J. D., Papaloizou, J. C. B., Lagrange, A. M. 1997, MNRAS, 292, 896
  22. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., Metcalf M. 1996, Cambridge University Press Schiffer, R., & Thielheim, K. O. 1982, A&A, 116, 1
  23. Smith, B. A., Terrile, R. J. 1984, Science, 226, 1421
  24. Smith, B. A., Terrile, R. J. 1987, BAAS, 19, 829
  25. Takeuchi, T., Artymowicz, P. 2001, ApJ, 557, 990
  26. Wahhaj, Z., Koerner, D. W., Ressler, M. E., Werner, M. W., Backman, D. E., & Sargent, A. I. 2003, ApJ, 584, L27
  27. Zuckerman, B., Epps, H., Gradie, J. C., Hayashi, J. N., Howell, R., 1986. BAAS, 18, 972