Academia.eduAcademia.edu

Outline

(T/E) on the Logical Form of Mathematical Language*

1985

Abstract

verbal explanations can do when it comes to justifying axioms and rules of inference. In the end, everybody must understand for himself. Per Martin- Liif 2

References (27)

  1. Martin-Liif, Per., Syntaz and Semantics of Mathematical Language, notes written by Peter Hancock on half of a lecture series given by Per Martin- Liif at Oxford University in Michaelmas Term 1975 (unpublished).
  2. Martin-LGf, Per., An intuitionistic theory oj types: predicative part, in H. E. Rose and J. C. Sheperdson (eds.), Logic Colloquium '7.9, Amster- dam (1975) 75-118; Martin-tif, Per., Constructive mathematics and com- puter programming, in Cohen L. J., Las, J., Pfeiffer, H., and Podewski, K. P. (eds.), Logic, Methodology, and Philoaophy o/ Science VI (Amsterdam) forthcoming; The only other attempt to construct a system which differen- tiat.es (in principle) between judgements (assertions) as acts of knowledge and judgements (assertions) as objects of knowledge is made by Dana Scott in Constructive Validity, in Symposium on Automatic Demo&ration, Lec- ture Notes in Mathematics 125, (1970) 237-275.
  3. Russell, Bertrand., The Principles of Mathematics, London (1937) 528.
  4. Sundholm, Goran., Conatructiona, Proof.. and The Meaning o/Logical Con- &ants, Journal of Philosophical Logic 12 (1983) 167.
  5. Kleene, S. C., On the Interpretation Oflntuitioniutic Num6er Theory, Jour- nal of Symbolic Logic 10 (1945) log-124.
  6. Lauchli, H., An Abstract Notion of Realizability for which Intuitioniatic Predicate Calculus is Complete, in Myhill, Kino and Vesley (eds.), Intu- itionism and Proof Theory, Amsterdam (1970) 227-284.
  7. Godel, Kurt., abet eine &her noeh nicht bentitzte Erweiterung des jiniten Standpunktea, Dialectica 12 (1958) 280-287.
  8. I 8. Howard, W. A., The Formulae-As-Types Notion of Construction, in Seldin and Hindley (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, London (1980) 47-0-d#O.
  9. Gentzen, G., Untersuchungcn iibcr das logische Schlicrsen, Mathematische Zeitschrift 39 (1934) 176-210, 405@i.
  10. Prawitz, Dag., Ideas and results in proof theory, in Proceedings of the Second Scandinavian Logic Symposium, G. E. Fenstad (ed.), Amsterdam (1971) 235-307.
  11. de Bruijn, N. G., A Survey of the Project AUTOMATH, in Seldin and Hindley (eds.), To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, London (1980) 570-606.
  12. Martin-Lizif, Per., Constructioe mathematics and computer programming (cf. n. 2).
  13. Gefwert, Christoffer, The Proposition-As-Rules Idea, SUIC-PUB 3303 (March 1984), Stanford.
  14. Gefwert, Christoffer, A Participator The Metaphysical Subject, SLAG PUB 3277 (December 1983), Stanford.
  15. Maury, Andre, Wittgenstein and the Limita of Language, Acta Philosoph- ica Fennica, Vol. 32, Helsinki (1981) 151.
  16. Wittgenstein, Ludwig, Philosophical Grammar, Oxford (1974) 186.
  17. Gefwert, Christoffer, A Participator: . . . (cf. n. 14), 92-95.
  18. Wittgenstein, Ludwig, Philosophical Remarks, Oxford (1975) 54.
  19. Martin-tif, Per., An intuitionistic theory of types . . . (cf. n. 2), 7S; Bishop, Erret., Foundations of Constructive Analysis, New York (1967) 2.
  20. Curry, H. B. and Feys, R., Combinary Logic, Vol. I, Amsterdam (1868).
  21. Howard, W. A., Formulae-Aa-Types Notion oj Con8truction (cf. II. 8).
  22. Martin-Liif, Per., About Models for Intuitionistie Type-theories and the Na- tion of Definitional Equality, in Kanger, S., ed., Proc. 3rd Stand. Logic Symp., Amsterdam (1975) 101; Gefwert, Christoffer, On the Logical Form of Pfimitiue Recufaiue Functions, SLAGPUB (May 1984).
  23. Gentzen, G., Unfetauehungen iiber da8 logi8ehe &hliessen, (cf. n. 8).
  24. Wittgenstein, L., Philosophical Remarks, Oxford (1975) 51.
  25. Gefwert, Christoffer, The Pfopo8ition-A8-Rute8 Idea, SLAGPUE3303 (March 1984).
  26. Ishiguro, Hid&, Wittgen8tein and the Theory of Typed, in Block, J. (ed.), Perspective8 on the Philosophy of Wittgenstein, Oxford (1981), 47.
  27. Martin-Liif, Per., An intuitioniatic theory of types . . . (cf. n. 2), 97-98.