Academia.eduAcademia.edu

Outline

Handwritten Text Verification on Mobile Devices

2015

https://doi.org/10.5220/0005355200260033

Abstract

In this work we propose an online verification system for both signature and isolated cursive words. The proposed system is designed to be used in a mobile device with limited computational capability. In the proposed scenario it is assumed that the user will use either his fingertip or a passive pen, therefore no azimuth or inclination information is available. Isolated words have certain desirable traits that can be more useful on a mobile device. Different isolated words can be used to verify the user in different applications, combining a knowledge-based security systems (i.e. passwords) with a behavioral biometric verification system. The proposed technique can achieve 4.39% of equal error rate for signatures and 6.5% for isolated words.

References (25)

  1. Bulacu, M. and Schomaker, L. (2007). Text-independent writer identification and verification using textural and allographic features. In IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 701-717.
  2. Chaudhry, R., Ravichandran, A., Hager, G., and Vidal, R. (2009). Histograms of oriented optical flow and binet- cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1932-1939. IEEE.
  3. Cpałka, K. and Zalasiński, M. (2014). On-line signature verification using vertical signature partitioning. Ex- pert Systems with Applications, 41(9):4170-4180.
  4. Cpalka, S., Zalasinski, M., and Rutkowski, L. (2014). New method for the on-line signature verification based on horizontal partitioning. Pattern Recognition, 47(8):2652-2661.
  5. da Rocha, T., De Barros Vidal, F., and Romariz, A. R. S. (2012). A proposal for human action classification based on motion analysis and artificial neural net- works. In Neural Networks (IJCNN), The 2012 In- ternational Joint Conference on, pages 1-6.
  6. Damer, N., Fuhrer, B., and Kuijper, A. (2013). Missing data estimation in multi-biometric identification and verification. In Biometric Measurements and Systems for Security and Medical Applications (BIOMS), 2013
  7. IEEE Workshop on, pages 41-45. IEEE.
  8. Fierrez-Aguilar, J., Nanni, L., Lopez-Peñalba, J., Ortega- Garcia, J., and Maltoni, D. (2005). An on-line signa- ture verification system based on fusion of local and global information. In Audio-and video-based biomet- ric person authentication, pages 523-532. Springer.
  9. Gudavalli, M., Babu, A., Raju, S., and Kumar, D. S. (2012). Multimodal biometrics-sources, architecture and fu- sion techniques: An overview. In Biometrics and Security Technologies (ISBAST), 2012 International Symposium on, pages 27-34. IEEE.
  10. Impedovo, D. and Pirlo, G. (2008). Automatic signature verification: the state of the art. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 38(5):609-635.
  11. Kholmatov, A. and Yanikoglu, B. (2005). Identity authen- tication using improved online signature verification method. Pattern recognition letters, 26(15):2400- 2408.
  12. Maiorana, E., Campisi, P., La Rocca, D., and Scarano, G. (2012). Use of polynomial classifiers for on-line sig- nature recognition. In Biometrics: Theory, Applica- tions and Systems (BTAS), 2012 IEEE Fifth Interna- tional Conference on, pages 265-270. IEEE.
  13. Nanni, L. and Lumini, A. (2008). A novel local on-line sig- nature verification system. Pattern Recognition Let- ters, 29(5):559-568.
  14. Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., Gonza- lez, J., Faundez-Zanuy, M., Espinosa, V., Satue, A., Hernaez, I., Igarza, J.-J., Vivaracho, C., et al. (2003). Mcyt baseline corpus: a bimodal biometric database. IEE Proceedings-Vision, Image and Signal Process- ing, 150(6):395-401.
  15. Pirlo, G. and Impedovo, D. (2013). Verification of static signatures by optical flow analysis. Human-Machine Systems, IEEE Transactions on, 43(5):499-505.
  16. Rashidi, S., Fallah, A., and Towhidkhah, F. (2012). Fea- ture extraction based dct on dynamic signature verifi- cation. Scientia Iranica, 19(6):1810-1819.
  17. Sae-Bae, N. and Memon, N. (2014). Online signature veri- fication on mobile devices. Information Forensics and Security, IEEE Transactions on, 9(6):933-947.
  18. Scheidat, T., Vielhauer, C., and Fischer, R. (2011). Com- parative study on fusion strategies for biometric hand- writing. In Proceedings of the thirteenth ACM mul- timedia workshop on Multimedia and security, pages 61-68. ACM.
  19. Sesa-Nogueras, E. (2011). Discriminative power of online handwritten words for writer recognition. In Security Technology (ICCST), 2011 IEEE International Carna- han Conference on, pages 1-8. IEEE.
  20. Sesa-Nogueras, E. and Faundez-Zanuy, M. (2012). Bio- metric recognition using online uppercase handwrit- ten text. Pattern Recognition, 45(1):128-144.
  21. Shekhar, S., Patel, V. M., Nasrabadi, N. M., and Chel- lappa, R. (2014). Joint sparse representation for ro- bust multimodal biometrics recognition. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 36(1):113-126.
  22. Tang, Y., Wu, X., and Bu, W. (2013). Offline text- independent writer identification using stroke frag- ment and contour based features. In Biometrics (ICB), 2013 International Conference on, pages 1-6.
  23. Van, B. L., Garcia-Salicetti, S., and Dorizzi, B. (2007). On using the viterbi path along with hmm likelihood in- formation for online signature verification. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(5):1237-1247.
  24. Yanikoglu, B. and Kholmatov, A. (2009). Online signature verification using fourier descriptors. EURASIP Jour- nal on Advances in Signal Processing, 2009:12.
  25. Zalasiński, M. and Cpałka, K. (2013). New approach for the on-line signature verification based on method of horizontal partitioning. In Artificial Intelligence and Soft Computing, pages 342-350. Springer.