Abstract
The purpose of this article is to introduce the concept of residual ν-metric space as a synthesis of a type of generalization of metric space and its extensions namely, b-metric space, extended b-metric space, strong b-metric space, strong controlled b-metric space, double controlled metric type space, suprametric space, b-suprametric space, rectangular metric space, rectangular b-metric space, extended rectangular b-metric space, homothetic rectangular metric space, controlled rectangular b-metric space, ν-generalized metric space and b_ν(s)metric space. Moreover we give a general form of the notion of contraction in a residual ν-metric space and we prove the analogue of the Banach Contraction Principle in this new framework.
References (32)
- T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 6 (2018), 320. https://doi.org/10.3390/math6120320.
- A. Azam, M. Arshad, Kannan Fixed Point Theorem on Generalized Metric Spaces, J. Nonlinear Sci. Appl. 01 (2008), 45-48. https://doi.org/10.22436/jnsa.001.01.07.
- A. Azam, M. Arshad, I. Beg, Banach Contraction Principle on Cone Rectangular Metric Spaces, Appl. Anal. Discret. Math. 3 (2009), 236-241. https://doi.org/10.2298/aadm0902236a.
- I.A. Bakhtin, The Contraction Mapping Principle in Quasimetric Spaces, Funct. Anal. Ulianowsk Gos. Ped. Inst. 30 (1989), 26-37.
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181.
- M. Berzig, First Results in Suprametric Spaces with Applications, Mediterr. J. Math. 19 (2022), 226. https: //doi.org/10.1007/s00009-022-02148-6.
- M. Berzig, Nonlinear Contraction in b-Suprametric Spaces, J. Anal. 32 (2024), 2401-2414. https://doi.org/ 10.1007/s41478-024-00732-5.
- M. Berzig, Strong B-Suprametric Spaces and Fixed Point Principles, Complex Anal. Oper. Theory 18 (2024), 148. https://doi.org/10.1007/s11785-024-01594-2.
- A. Branciari, A Fixed Point Theorem of Banach-Caccioppoli Type on a Class of Generalized Metric Spaces, Publ. Math. Debr. 57 (2000), 31-37. https://doi.org/10.5486/pmd.2000.2133.
- S. Czerwik, Contraction Mappings in b-Metric Spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. https://eudml.org/doc/23748.
- R. George, S. Radenovic, K.P. Reshma, S. Shukla, Rectangular b-Metric Space and Contraction Principles, J. Nonlinear Sci. Appl. 8 (2015), 1005-1013.
- C. Harrafa, A. Mbarki, Homothetic Rectangular Metric Space and Contraction Principles, J. Anal. 33 (2024), 291-317. https://doi.org/10.1007/s41478-024-00834-0.
- C. Harrafa, A. Mbarki, On the H ψ -Quiver Metric and the Banach Contraction Principle, Bol. Soc. Paran. Mat. 43 (2025), 1-27.
- H.S. Ding, V. Ozturk, S. Radenovic, On Some New Fixed Point Results in b-Rectangular Metric Spaces, J. Nonlinear Sci. Appl. 8 (2015), 378-386.
- I.R. Sarma, J.M. Rao, S.S. Rao, Contractions over Generalized Metric Spaces, J. Nonlinear Sci. Appl. 2 (2009), 180-182.
- J.R. Roshan, N. Hussain, V. Parvaneh, Z. Kadelburg, New Fixed Point Results in Rectangular b-Metric Spaces, NA-Control Theory, in Press.
- M. Jleli, B. Samet, The Kanann's Fixed Points Theorem in Cone Rectangular Metric Space, J. Nonlinear Sci. Appl. 2 (2009), 161-167.
- T. Kamran, M. Samreen, Q. UL Ain, A Generalization of B-Metric Space and Some Fixed Point Theorems, Mathematics 5 (2017), 19. https://doi.org/10.3390/math5020019.
- M. Khamsi, N. Hussain, Kkm Mappings in Metric Type Spaces, Nonlinear Anal.: Theory Methods Appl. 73 (2010), 3123-3129. https://doi.org/10.1016/j.na.2010.06.084.
- M. Kir, H. Kiziltunc, On Some Well Known Fixed Point Theorems in b-Metric Spaces, Turk. J. Anal. Number Theory 1 (2016), 13-16. https://doi.org/10.12691/tjant-1-1-4.
- M.M. Fréchet, Sur Quelques Points du Calcul Fonctionnel, Rend. Circ. Mat. Palermo 22 (1906), 1-72. https: //doi.org/10.1007/bf03018603.
- D. Mihet ¸, On Kannan Fixed Point Principle in Generalized Metric Spaces, J. Nonlinear Sci. Appl. 02 (2009), 92-96. https://doi.org/10.22436/jnsa.002.02.03.
- Z. Mustafa, V. Parvaneh, M.M. Jaradat, Z. Kadelburg, Extended Rectangular B-Metric Spaces and Some Fixed Point Theorems for Contractive Mappings, Symmetry 11 (2019), 594. https://doi.org/10.3390/sym110 40594.
- S. Reich, Kannan's Fixed Point Theorem, Boll. Un. Mat. Ital. 4 (1971), 1-11.
- S. Reich, Some Remarks Concerning Contraction Mappings, Can. Math. Bull. 14 (1971), 121-124. https: //doi.org/10.4153/cmb-1971-024-9.
- M. Rossafi, A. Kari, Fixed Point Theorems in Controlled Rectangular Metric Spaces, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 30 (2023), 169-190. https://doi.org/10.7468/JKSMEB.2023.30.2.169.
- D. Santina, W.A. Mior Othman, K.B. Wong, N. Mlaiki, New Generalization of Metric-Type Spaces-strong Controlled, Symmetry 15 (2023), 416. https://doi.org/10.3390/sym15020416.
- W. Shatanawi, K. Abodayeh, A.A. Mukheimer, Some Fixed Point Theorems in Extended b-Metric Spaces, UPB Sci. Bull. Ser. A: Appl. Math. Phys. 80 (2018), 71-78.
- S.K. Panda, K.S. Kalla, A. Nagy, L. Priyanka, Numerical Simulations and Complex Valued Fractional Order Neural Networks via (ε-µ)-Uniformly Contractive Mappings, Chaos Solitons Fractals 173 (2023), 113738. https://doi.org/10.1016/j.chaos.2023.113738.
- Z. Kadelburg, S. Radenovic, On Generalized Metric Spaces: A Survey, TWMS J. Pure Appl. Math. 5 (2014), 3-13.
- Z.D. Mitrović, S. Radenović, The Banach and Reich Contractions in b ν (s)-Metric Spaces, J. Fixed Point Theory Appl. 19 (2017), 3087-3095. https://doi.org/10.1007/s11784-017-0469-2.
- W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014. https://doi.org/10.100 7/978-3-319-10927-5.