Academia.eduAcademia.edu

Outline

RESIDUAL ν-METRIC SPACE AND BANACH CONTRACTION PRINCIPLE

2025

https://doi.org/10.28919/AFPT/9478

Abstract

The purpose of this article is to introduce the concept of residual ν-metric space as a synthesis of a type of generalization of metric space and its extensions namely, b-metric space, extended b-metric space, strong b-metric space, strong controlled b-metric space, double controlled metric type space, suprametric space, b-suprametric space, rectangular metric space, rectangular b-metric space, extended rectangular b-metric space, homothetic rectangular metric space, controlled rectangular b-metric space, ν-generalized metric space and b_ν(s)metric space. Moreover we give a general form of the notion of contraction in a residual ν-metric space and we prove the analogue of the Banach Contraction Principle in this new framework.

References (32)

  1. T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 6 (2018), 320. https://doi.org/10.3390/math6120320.
  2. A. Azam, M. Arshad, Kannan Fixed Point Theorem on Generalized Metric Spaces, J. Nonlinear Sci. Appl. 01 (2008), 45-48. https://doi.org/10.22436/jnsa.001.01.07.
  3. A. Azam, M. Arshad, I. Beg, Banach Contraction Principle on Cone Rectangular Metric Spaces, Appl. Anal. Discret. Math. 3 (2009), 236-241. https://doi.org/10.2298/aadm0902236a.
  4. I.A. Bakhtin, The Contraction Mapping Principle in Quasimetric Spaces, Funct. Anal. Ulianowsk Gos. Ped. Inst. 30 (1989), 26-37.
  5. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181.
  6. M. Berzig, First Results in Suprametric Spaces with Applications, Mediterr. J. Math. 19 (2022), 226. https: //doi.org/10.1007/s00009-022-02148-6.
  7. M. Berzig, Nonlinear Contraction in b-Suprametric Spaces, J. Anal. 32 (2024), 2401-2414. https://doi.org/ 10.1007/s41478-024-00732-5.
  8. M. Berzig, Strong B-Suprametric Spaces and Fixed Point Principles, Complex Anal. Oper. Theory 18 (2024), 148. https://doi.org/10.1007/s11785-024-01594-2.
  9. A. Branciari, A Fixed Point Theorem of Banach-Caccioppoli Type on a Class of Generalized Metric Spaces, Publ. Math. Debr. 57 (2000), 31-37. https://doi.org/10.5486/pmd.2000.2133.
  10. S. Czerwik, Contraction Mappings in b-Metric Spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. https://eudml.org/doc/23748.
  11. R. George, S. Radenovic, K.P. Reshma, S. Shukla, Rectangular b-Metric Space and Contraction Principles, J. Nonlinear Sci. Appl. 8 (2015), 1005-1013.
  12. C. Harrafa, A. Mbarki, Homothetic Rectangular Metric Space and Contraction Principles, J. Anal. 33 (2024), 291-317. https://doi.org/10.1007/s41478-024-00834-0.
  13. C. Harrafa, A. Mbarki, On the H ψ -Quiver Metric and the Banach Contraction Principle, Bol. Soc. Paran. Mat. 43 (2025), 1-27.
  14. H.S. Ding, V. Ozturk, S. Radenovic, On Some New Fixed Point Results in b-Rectangular Metric Spaces, J. Nonlinear Sci. Appl. 8 (2015), 378-386.
  15. I.R. Sarma, J.M. Rao, S.S. Rao, Contractions over Generalized Metric Spaces, J. Nonlinear Sci. Appl. 2 (2009), 180-182.
  16. J.R. Roshan, N. Hussain, V. Parvaneh, Z. Kadelburg, New Fixed Point Results in Rectangular b-Metric Spaces, NA-Control Theory, in Press.
  17. M. Jleli, B. Samet, The Kanann's Fixed Points Theorem in Cone Rectangular Metric Space, J. Nonlinear Sci. Appl. 2 (2009), 161-167.
  18. T. Kamran, M. Samreen, Q. UL Ain, A Generalization of B-Metric Space and Some Fixed Point Theorems, Mathematics 5 (2017), 19. https://doi.org/10.3390/math5020019.
  19. M. Khamsi, N. Hussain, Kkm Mappings in Metric Type Spaces, Nonlinear Anal.: Theory Methods Appl. 73 (2010), 3123-3129. https://doi.org/10.1016/j.na.2010.06.084.
  20. M. Kir, H. Kiziltunc, On Some Well Known Fixed Point Theorems in b-Metric Spaces, Turk. J. Anal. Number Theory 1 (2016), 13-16. https://doi.org/10.12691/tjant-1-1-4.
  21. M.M. Fréchet, Sur Quelques Points du Calcul Fonctionnel, Rend. Circ. Mat. Palermo 22 (1906), 1-72. https: //doi.org/10.1007/bf03018603.
  22. D. Mihet ¸, On Kannan Fixed Point Principle in Generalized Metric Spaces, J. Nonlinear Sci. Appl. 02 (2009), 92-96. https://doi.org/10.22436/jnsa.002.02.03.
  23. Z. Mustafa, V. Parvaneh, M.M. Jaradat, Z. Kadelburg, Extended Rectangular B-Metric Spaces and Some Fixed Point Theorems for Contractive Mappings, Symmetry 11 (2019), 594. https://doi.org/10.3390/sym110 40594.
  24. S. Reich, Kannan's Fixed Point Theorem, Boll. Un. Mat. Ital. 4 (1971), 1-11.
  25. S. Reich, Some Remarks Concerning Contraction Mappings, Can. Math. Bull. 14 (1971), 121-124. https: //doi.org/10.4153/cmb-1971-024-9.
  26. M. Rossafi, A. Kari, Fixed Point Theorems in Controlled Rectangular Metric Spaces, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 30 (2023), 169-190. https://doi.org/10.7468/JKSMEB.2023.30.2.169.
  27. D. Santina, W.A. Mior Othman, K.B. Wong, N. Mlaiki, New Generalization of Metric-Type Spaces-strong Controlled, Symmetry 15 (2023), 416. https://doi.org/10.3390/sym15020416.
  28. W. Shatanawi, K. Abodayeh, A.A. Mukheimer, Some Fixed Point Theorems in Extended b-Metric Spaces, UPB Sci. Bull. Ser. A: Appl. Math. Phys. 80 (2018), 71-78.
  29. S.K. Panda, K.S. Kalla, A. Nagy, L. Priyanka, Numerical Simulations and Complex Valued Fractional Order Neural Networks via (ε-µ)-Uniformly Contractive Mappings, Chaos Solitons Fractals 173 (2023), 113738. https://doi.org/10.1016/j.chaos.2023.113738.
  30. Z. Kadelburg, S. Radenovic, On Generalized Metric Spaces: A Survey, TWMS J. Pure Appl. Math. 5 (2014), 3-13.
  31. Z.D. Mitrović, S. Radenović, The Banach and Reich Contractions in b ν (s)-Metric Spaces, J. Fixed Point Theory Appl. 19 (2017), 3087-3095. https://doi.org/10.1007/s11784-017-0469-2.
  32. W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014. https://doi.org/10.100 7/978-3-319-10927-5.