Academia.eduAcademia.edu

Outline

Ultraparallelism Constructive Methods. From P to CC

Prepublicated

https://doi.org/10.5281/ZENODO.16744728

Abstract

Nowadays, computational processes tend to be more **parallelizable**, especially those that are **polynomially bounded**, enabling the budgeting of computer architectures and networks capable of meeting non-functional requirements. This allows for posing a vast array of **efficient problems** that, leveraging a robust computer network, can be resolved almost **instantaneously**. This very function is that of consciousness which, trapped in a kind of idealism, perceives itself as the sole possessor of general dominance. This article aims to provide an exceptionally clear understanding of these concepts and the applicability of various **transformations**. These transformations will not only allow us to map a **P-complete problem into CC (Comparator Circuit Class)**, given the demonstrated equivalence of CC and P, but will also be capable of **estimating** the number of solutions computed by a **nondeterministic Turing machine** in logarithmic time, provided the role of the verb 'to estimate' is accepted.

References (36)

  1. References Anderson, J. H., Mayr, E. W., & Warmuth, M. K. (1989). Parallel approximation algorithm for bin packing. Algorithmica, 4(2), 191-213.
  2. Anderson, R. J. (1987). Some observations on P-completeness. In Proceedings of the IEEE Symposium on Foundations of Computer Science (pp. 43-52).
  3. Arora, S., & Barak, B. (2009). Computational Complexity: A Modern Approach. Cambridge University Press.
  4. Bahi, J. M., Contassot-Vivier, S., & Couturier, R. (2008). Parallel Iterative Algorithms: From Sequential to Grid Computing. Chapman & Hall/CRC.
  5. Blelloch, G. (1990). Prefix Sums and Their Applications. TR CMU-CS-90-190
  6. Borodin, A. (1977). On relating time and space to size and depth. SIAM Journal on Computing, 6(4), 733-744.
  7. Brent, R. P. (1974). "The Parallel Evaluation of General Arithmetic Expressions." Journal of the ACM, 21(2), 201-206. https://doi.org/10.1145/321812.321815
  8. Cole, R. & Vishkin, U. (1986). Deterministic Coin Tossing and accelerating cascades: micro and macro techniques for designing parallel algorithms. FOCS '86. https://dl.acm.org/doi/pdf/10.1145/12130.12151
  9. Cook, S. A. (1971). The complexity of theorem proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing (pp. 151-158).
  10. Cook, S. A. (1973). An observation on time-storage trade off. In Fifth Annual ACM Symposium on Theory of Computing (pp. 29-33).
  11. Cook, S. A. (1975). The circuit value problem is log space complete for P. SIGACT News, 7(1), 18-20.
  12. Cook, S. A. (1985). A taxonomy of problems with fast parallel algorithms. Information and Control, 64(1-3), 2-22.
  13. Feder, T., Plotkin, S., & Tardos, É. (1991). A Sublinear Parallel Algorithm for Stable Matching. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (pp. 51-60).
  14. Fischer, M. J., & Pippenger, N. (1979). "Relations Among Complexity Measures". Journal of the ACM, 26(2), 361-381. DOI: 10.1145/322123.322138
  15. Galil, Z. (1974). Two way deterministic pushdown automaton languages and some open problems in the theory of computation. In 15th Annual Symposium on Switching and Automata Theory (pp. 170-177).
  16. Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company.
  17. Goldreich, O. (2001). Foundations of Cryptography: Basic Tools. Cambridge University Press.
  18. Goldschlager, L. M., Shaw, R. A., & Staples, J. (1982). The maximum flow problem is log space complete for P. Theoretical Computer Science, 21(1), 105-111.
  19. Greenlaw, R., Hoover, H. J., & Ruzzo, W. L. (1995). Limits to Parallel Computation: P- Completeness Theory. Morgan Kaufmann Publishers.
  20. Immerman, N. (1988). Nondeterministic space is closed under complementation. SIAM Journal on Computing, 17(5), 935-938.
  21. JaJa, J. (1992). An Introduction to Parallel Algorithms. SIAM J. Comput.
  22. Johnson, D. S. (1990). A Catalog of Complexity Classes. In J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (pp. 67-164). MIT Press.
  23. Jones, N. D. (1975). Space-bounded reducibility among combinatorial problems. Journal of Computer and System Sciences, 11(1), 68-85.
  24. Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of Computer Computations (pp. 85-103). Plenum Press.
  25. Karp, R. M., & Ramachandran, V. (1990). Parallel Algorithms for Shared-memory Machines. In J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (pp. 869-941). MIT Press.
  26. Ladner, R. E. (1975). The circuit value problem is log space complete for P. SIGACT News, 7(1), 18-20. DOI: 10.1145/990518.990519
  27. Mayr, E. W., & Subramanian, A. (1989). The Complexity of the Comparator Circuit Value Problem. In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures (pp. 248-257).
  28. Miller, R., & Stout, Q. F. (1991). Parallel Algorithms for Regular Architectures: Mesh, Pyramid, and Hypercube. MIT Press.
  29. Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.
  30. Ruzzo, W. L. (1980). Tree-size bounded alternation. Journal of Computer and System Sciences, 21(2), 218-235.
  31. Sipser, M. (2012). Introduction to the Theory of Computation (3rd ed.). Cengage Learning.
  32. Skiena, S. S. (2008). The Algorithm Design Manual (2nd ed.). Springer-Verlag London Limited.
  33. Subramanian, A. (1989). A New Approach to Stable Matching Problems. Report No. STAN-CS-89-1275, Stanford University, Department of Computer Science.
  34. Szelepcsényi, R. (1988). The method of forced enumeration for nondeterministic automata. Acta Informatica, 26(3), 279-284.
  35. Tardos, É. (1989). A strongly polynomial minimum cost circulation algorithm. Algorithmica, 4(2), 191-213.
  36. Tarjan, R. E., & Vishkin, U. (1984). Finding biconnected components and computing tree functions in logarithmic parallel time. In 25th Annual Symposium on Foundations of Computer Science (pp. 12-20).