On the Role of Theory and Modeling in Neuroscience
The Journal of Neuroscience
https://doi.org/10.1523/JNEUROSCI.1179-22.2022Abstract
In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themse...
References (200)
- D. Marr, From the Retina to the Neocortex: Selected Papers of David Marr (Edited by L. M. Vaina. Birkhäuser, 1991).
- A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 , 500-544 (1952).
- J. O'Keefe, L. Nadel, The Hippocampus as a Cognitive Map (Clarendon Press, 1978).
- R. E. Goldstein, Are theoretical results "Results"? Elife 7 (2018).
- W. Bialek, Perspectives on theory at the interface of physics and biology. Rep. Prog. Phys. 81 , 012601 (2018).
- R. Phillips, Theory in Biology: Figure 1 or Figure 7? Trends Cell Biol. 25 , 723-729 (2015).
- K. R. Popper, The logic of scientific discovery New York. Science (1959).
- T. S. Kuhn, The Structure of Scientific Revolutions: 50th Anniversary Edition (University of Chicago Press, 2012).
- I. Lakatos, Science and pseudoscience. Philosophical papers 1 , 1-7 (1978).
- S. Firestein, Failure: Why Science Is So Successful (Oxford University Press, 2015).
- P. Godfrey-Smith, An introduction to the philosophy of science: Theory and reality (2003).
- P. Feyerabend, Against Method (Verso, 1993).
- S. Firestein, Ignorance: How It Drives Science (Oxford University Press, USA, 2012).
- M. Ben-Ari, Just A Theory: Exploring The Nature Of Science (Prometheus Books, 2011).
- B. C. van Fraassen, The Scientific Image (Clarendon Press, 1980).
- N. David Mermin, What's Wrong with this Pillow? Phys. Today 42 , 9-11 (1989).
- D. Kaiser, History: Shut up and calculate! Nature 505 , 153-155 (2014).
- L. Laudan, Progress and Its Problems: Towards a Theory of Scientific Growth (University of California Press, 1978).
- H. Douglas, Pure science and the problem of progress. Stud. Hist. Philos. Sci. 46 , 55-63 (2014).
- A. Franklin, Forging, cooking, trimming, and riding on the bandwagon. Am. J. Phys. 52 , 786-793 (1984).
- M. Jeng, A selected history of expectation bias in physics. Am. J. Phys. 74 , 578-583 (2006).
- A. D. Redish, E. Kummerfeld, R. L. Morris, A. C. Love, Opinion: Reproducibility failures are essential to scientific inquiry. Proc. Natl. Acad. Sci. U. S. A. 115 , 5042-5046 (2018).
- A. Newell, H. A. Simon, Human problem solving (Prentice-Hall, 1972).
- W. Bechtel, R. C. Richardson, Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research (MIT Press, 2010).
- W. B. Scoville, B. Milner, Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20 , 11-21 (1957).
- L. R. Squire, Memory and Brain (Oxford University Press, 1987). March 27, 2020 preprint Levenstein et al . -On the role of theory and modeling in neuroscience | 18
- L. Nadel, "Multiple memory systems: What and Why, an update" in Memory Systems 1994 , D. L. Schacter, E. Tulving, Eds. (MIT Press, 1994), pp. 39-64.
- D. L. Schacter, The Seven Sins of Memory (Houghton Mifflin, 2001).
- B. W. Balleine, A. Dickinson, Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37 , 407-419 (1998).
- N. D. Daw, Y. Niv, P. Dayan, Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8 , 1704-1711 (2005).
- A. D. Redish, The Mind within the Brain: How we make decisions and how those decisions go wrong (Oxford, 2013).
- R. Descartes, Discours de la Méthode Pour bien conduire sa raison, et chercher la vérité dans les sciences (1637).
- H. Chang, Scientific Progress: Beyond Foundationalism and Coherentism 1. Royal Institute of Philosophy Supplements 61 , 1-20 (2007).
- H. Chang, The Persistence of Epistemic Objects Through Scientific Change. Erkenntnis 75 , 413-429 (2011).
- P. Luyten, L. C. Mayes, P. Fonagy, M. Target, S. J. Blatt, Handbook of Psychodynamic Approaches to Psychopathology (Guilford Publications, 2015).
- American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) (American Psychiatric Pub, 2013).
- B. N. Cuthbert, T. R. Insel, Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11 , 126 (2013).
- T. R. Insel, B. N. Cuthbert, Medicine. Brain disorders? Precisely. Science 348 , 499-500 (2015).
- C. G. Hempel, P. Oppenheim, Studies in the Logic of Explanation. Philos. Sci. 15 , 135-175 (1948).
- J. Woodward, "Scientific Explanation" in The Stanford Encyclopedia of Philosophy , E. N. Zalta, Ed. (2019).
- R. G. Winther, The Structure of Scientific Theories. The Stanford Encyclopedia of Philosophy (2016).
- M. Weisberg, Simulation and Similarity: Using Models to Understand the World (OUP USA, 2013).
- R. Frigg, S. Hartmann, Models in science (2006).
- B. Hille, Ion Channels of Excitable Membranes (Sinauer, 2001).
- E. Marder, Models identify hidden assumptions. Nature Neuroscience 3 , 1198-1198 (2000).
- J. M. Epstein, Why model? Journal of Artificial Societies and Social Simulation 11 , 12 (2008).
- J. D. Watson, F. H. Crick, Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171 , 737-738 (1953).
- U. Alon, An introduction to systems biology: design principles of biological circuits (Chapman and Hall/CRC, 2006).
- A. D. Dorval, W. M. Grill, Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism. J. Neurophysiol. 111 , 1949-1959 (2014).
- W. Schultz, et al. , Deficits in reaction times and movement times as correlates of hypokinesia in monkeys with MPTP-induced striatal dopamine depletion. J. Neurophysiol. 61 , 651-668 (1989).
- W. Rall, "Cable theory for dendritic neurons" in Methods in Neuronal Modeling , C. Koch, I. Segev, Eds. (MIT Press, 1992), pp. 9-62.
- W. Gerstner, W. Kistler, Spiking Neuron Models (Cambridge University Press, 2002).
- J. W. Langston, J. Palfreman, The Case of the Frozen Addicts: How the Solution of a Medical Mystery Revolutionized the Understanding of Parkinson's Disease (IOS Press, 2013).
- A. Rosenblueth, N. Wiener, The Role of Models in Science. Philos. Sci. 12 , 316-321 (1945).
- T. Stafford, What use are computational models of cognitive processes? in Connectionist Models of Behaviour and Cognition II: Proceedings of the 11th Neural Computation and Psychology Workshop , Mayor, J., Ruh, N., Plunkett, K, Ed. (World Scientific., 2009).
- N. Cartwright, Models: The Blueprints for Laws. Philos. Sci. 64 , S292-S303 (1997). March 27, 2020 preprint Levenstein et al . -On the role of theory and modeling in neuroscience | 19
- C. Koch, I. Segev, Eds., Methods in Neuronal Modeling (MIT Press, 1989).
- W. Gerstner, H. Sprekeler, G. Deco, Theory and simulation in neuroscience. Science 338 , 60-65 (2012).
- P. Dayan, L. F. Abbott, Theoretical Neuroscience (MIT Press, 2001).
- D. M. Kaplan, W. Bechtel, Dynamical models: an alternative or complement to mechanistic explanations? Top. Cogn. Sci. 3 , 438-444 (2011).
- A. D. Redish, Beyond the Cognitive Map: From Place Cells to Episodic Memory (MIT Press, 1999).
- L. L. Colgin, Five Decades of Hippocampal Place Cells and EEG Rhythms in Behaving Rats. The Journal of Neuroscience 40 , 54-60 (2020).
- C. F. Craver, Explaining the Brain: Mechanisms and the Mosaic Unity of Neuroscience (Clarendon Press, 2007).
- D. M. Kaplan, Explanation and description in computational neuroscience. Synthese 183 , 339 (2011).
- C. Linnaeus, Systema Naturae (1758).
- S. R. y. Cajal, N. Swanson, L. W. Swanson, Histology of the nervous system of man and vertebrates (Oxford University Press, 1995).
- D. Salsburg, The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century (Macmillan, 2001).
- R. E. Kass, U. T. Eden, E. N. Brown, Analysis of Neural Data (Springer, 2014).
- M. T. Harrison, A. Amarasingham, R. E. Kass, "Statistical Identification of Synchronous Spiking" in Spike Timing: Mechanisms and Function , P. M. DiLorenzo, J. D. Victor, Eds. (CRC Press, 2013), p. 77.
- A. Amarasingham, S. Geman, M. T. Harrison, Ambiguity and nonidentifiability in the statistical analysis of neural codes. Proc. Natl. Acad. Sci. U. S. A. 112 , 6455-6460 (2015).
- M. Baker, 1,500 scientists lift the lid on reproducibility. Nature 533 , 452-454 (2016).
- S. N. Goodman, D. Fanelli, J. P. A. Ioannidis, What does research reproducibility mean? Sci. Transl. Med. 8 , 341ps12 (2016).
- D. Fanelli, Opinion: Is science really facing a reproducibility crisis, and do we need it to? Proc. Natl. Acad. Sci. U. S. A. 115 , 2628-2631 (2018).
- National Academies of Sciences Engineering, Medicine, Reproducibility and Replicability in Science (The National Academies Press, 2019).
- drugmonkey, Generalization, not "reproducibility." Drugmonkey (2018) (January 5, 2020).
- P. Smaldino, Better methods can't make up for mediocre theory. Nature 575 , 9 (2019).
- P. Machamer, L. Darden, C. F. Craver, Thinking about Mechanisms. Philos. Sci. 67 , 1-25 (2000).
- A. D. Redish, R. Kazinka, A. B. Herman, Taking an engineer's view: Implications of network analysis for computational psychiatry. Behav. Brain Sci. 42 , e24 (2019).
- L. Elefteriadou, An Introduction to Traffic Flow Theory (Springer, New York, NY, 2014).
- M. S. Gazzaniga, Whos in charge. Free will and the science of the brain. New York: Ecco (2011).
- S. P. Ellner, J. Guckenheimer, Dynamic Models in Biology (Princeton University Press, 2006).
- E. M. Izhikevich, Dynamical Systems in Neuroscience (MIT Press, 2007).
- G. Bard Ermentrout, D. H. Terman, Mathematical Foundations of Neuroscience (Springer Science & Business Media, 2010).
- F. Gabbiani, S. J. Cox, Mathematics for Neuroscientists (Academic Press, 2017).
- D. O. Hebb, The Organization of Behavior (Wiley, 1949).
- J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1988).
- J. Pearl, Causality: Models, Reasoning and Inference (Cambridge University Press, 2009).
- G. W. Imbens, D. B. Rubin, Causal Inference in Statistics, Social, and Biomedical Sciences (Cambridge University Press, 2015).
- J. Pearl, Causal inference in statistics: An overview. Stat. Surv. 3 , 96-146 (2009).
- S. Ma, P. Kemmeren, C. F. Aliferis, A. Statnikov, An Evaluation of Active Learning Causal Discovery Methods for Reverse-Engineering Local Causal Pathways of Gene Regulation. Sci. Rep. 6 , 22558 (2016). March 27, 2020 preprint Levenstein et al . -On the role of theory and modeling in neuroscience | 20
- A. V. Alekseyenko, et al. , Causal graph-based analysis of genome-wide association data in rheumatoid arthritis. Biol. Direct 6 , 25 (2011).
- S. Mani, C. Aliferis, S. Krishnaswami, T. Kotchen, Learning causal and predictive clinical practice guidelines from data. Stud. Health Technol. Inform. 129 , 850-854 (2007).
- K. J. Friston, J. Kahan, B. Biswal, A. Razi, A DCM for resting state fMRI. Neuroimage 94 , 396-407 (2014).
- K. E. Stephan, et al. , Nonlinear dynamic causal models for fMRI. Neuroimage 42 , 649-662 (2008).
- H. B. Barlow, Others, Possible principles underlying the transformation of sensory messages. Sensory communication 1 , 217-234 (1961).
- K. P. Kording, J. B. Tenenbaum, R. Shadmehr, The dynamics of memory as a consequence of optimal adaptation to a changing body. Nat. Neurosci. 10 , 779-786 (2007).
- W. Bialek, Biophysics: Searching for Principles (Princeton University Press, 2012).
- W. Bialek, S. Setayeshgar, Cooperativity, sensitivity, and noise in biochemical signaling. Phys. Rev. Lett. 100 , 258101 (2008).
- G. A. Parker, J. M. Smith, Optimality theory in evolutionary biology. Nature 348 , 27-33 (1990).
- F. Rieke, D. Warland, R. de Ruyter van Steveninck, W. Bialek, Spikes (MIT Press, 1997).
- G. D. Field, F. Rieke, Nonlinear signal transfer from mouse rods to bipolar cells and implications for visual sensitivity. Neuron 34 , 773-785 (2002).
- E. Doi, M. Lewicki, Optimal retinal population coding predicts inhomogeneous light adaptation and contrast sensitivity across the visual field. Journal of Vision 14 , 1188-1188 (2014).
- R. Gregory, P. Cavanagh, The Blind Spot. Scholarpedia J. 6 , 9618 (2011).
- S. J. Gould, Hen's Teeth and Horse's Toes (Norton, 1983).
- L. Valiant, Probably Approximately Correct: NatureÕs Algorithms for Learning and Prospering in a Complex World (Basic Books, 2013).
- A. Wikenheiser, D. W. Stephens, A. D. Redish, Subjective costs drive overly-patient foraging strategies in rats on an intertemporal foraging task. Proc. Natl. Acad. Sci. U. S. A. 110 , 8308-8313 (2013).
- B. M. Sweis, et al. , Sensitivity to "sunk costs" in mice, rats, and humans. Science 361 , 178-181 (2018).
- B. Schmidt, A. A. Duin, A. D. Redish, Disrupting the medial prefrontal cortex alters hippocampal sequences during deliberative decision making. J. Neurophysiol. 121 , 1981-2000 (2019).
- B. M. Sweis, M. J. Thomas, A. D. Redish, Mice learn to avoid regret. PLoS Biol. 16 , e2005853 (2018).
- H. A. Simon, Theories of bounded rationality. Decision and organization 1 , 161-176 (1972).
- A. P. Steiner, A. D. Redish, Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task. Nat. Neurosci. 17 , 995-1002 (2014).
- D. H. Hubel, T. N. Wiesel, Brain mechanisms of vision. Sci. Am. 241 , 150-162 (1979).
- D. H. Hubel, T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160 , 106-154 (1962).
- M. Carandini, Area V1. Scholarpedia J. 7 , 12105 (2012).
- L. Paninski, Maximum likelihood estimation of cascade point-process neural encoding models. Network 15 , 243-262 (2004).
- K. W. Latimer, F. Rieke, J. W. Pillow, Inferring synaptic inputs from spikes with a conductance-based neural encoding model. Elife 8 (2019).
- B. A. Olshausen, D. J. Field, Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Res. 37 , 3311-3325 (1997).
- P. Churchland, T. J. Sejnowski, The computational Brain (MIT Press, 1994).
- D. Marr, Vision (W. H. Freeman and Co., 1982).
- G. M. Shepherd, Neurobiology (Oxford University Press, 1994).
- T. Sejnowski, C. Koch, P. Churchland, Computational neuroscience. Science 241 , 1299-1306 (1988). March 27, 2020 preprint Levenstein et al . -On the role of theory and modeling in neuroscience | 21
- S. Guttinger, A. C. Love, Characterizing scientific failure: Putting the replication crisis in context. EMBO Rep. 20 , e48765 (2019).
- T. Colburn, G. Shute, Abstraction in Computer Science. Minds Mach. 17 , 169-184 (2007).
- J. M. Wing, Computational thinking and thinking about computing. Philos. Trans. A Math. Phys. Eng. Sci. 366 , 3717-3725 (2008).
- T. O'Leary, A. C. Sutton, E. Marder, Computational models in the age of large datasets. Current Opinion in Neurobiology 32 , 87-94 (2015).
- M. I. Eronen, D. S. Brooks, Levels of Organization in Biology. The Stanford Encyclopedia of Philosophy (2018).
- B. B. Machta, R. Chachra, M. K. Transtrum, J. P. Sethna, Parameter space compression underlies emergent theories and predictive models. Science 342 , 604-607 (2013).
- M. K. Transtrum, et al. , Perspective: Sloppiness and emergent theories in physics, biology, and beyond. J. Chem. Phys. 143 , 010901 (2015).
- R. N. Gutenkunst, et al. , Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3 , 1871-1878 (2007).
- A. A. Prinz, D. Bucher, E. Marder, Similar network activity from disparate circuit parameters. Nat. Neurosci. 7 , 1345-1352 (2004).
- D. Panas, et al. , Sloppiness in spontaneously active neuronal networks. J. Neurosci. 35 , 8480-8492 (2015).
- H. R. Wilson, J. D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic tissue. Kybernetik 13 , 55-80 (1973).
- D. J. Pinto, J. C. Brumberg, D. J. Simons, G. B. Ermentrout, A Quantitative Population Model of Whisker Barrels: Re-examining the Wilson-Cowan Equations. J. Comput. Neurosci. 3 , 247-264 (1996).
- A. Destexhe, T. J. Sejnowski, The Wilson-Cowan model, 36 years later. Biol. Cybern. 101 , 1-2 (2009).
- J. Jalics, M. Krupa, H. G. Rotstein, A novel mechanism for mixed-mode oscillations in a neuronal model. Dynamical Systems: An International Journal iFirst , 1-38 (2010).
- H. G. Rotstein, T. Oppermann, J. A. White, N. Kopell, A reduced model for medial entorhinal cortex stellate cells: subthreshold oscillations, spiking and synchronization. J. Comput. Neurosci. 21 , 271-292 (2006).
- Z. W. Pylyshyn, Computation and Cognition: Toward a Foundation for Cognitive Science (MIT Press, 1984).
- C. L. Tan, Z. A. Knight, Regulation of Body Temperature by the Nervous System. Neuron 98 , 31-48 (2018).
- S. F. Morrison, K. Nakamura, Central neural pathways for thermoregulation. Front. Biosci. 16 , 74-104 (2011).
- W. Bechtel, Mechanisms in Cognitive Psychology: What Are the Operations? Philos. Sci. 75 , 983-994 (2008).
- E. Fehr, I. Krajbich, "Social preferences and the brain" in Neuroeconomics (Second Edition) , (Elsevier, 2014), pp. 193-218.
- M. Gilead, Y. Trope, N. Liberman, Above and Beyond the Concrete: The Diverse Representational Substrates of the Predictive Brain. Behav. Brain Sci. , 1-63 (2019).
- M. Gilead, N. Liberman, A. Maril, Construing counterfactual worlds: The role of abstraction. European Journal of Social Psychology 42 , 391-397 (2012).
- L. Wu, D. Wang, J. A. Evans, Large teams develop and small teams disrupt science and technology. Nature 566 , 378-382 (2019).
- P. Grim, et al. , Scientific Networks on Data Landscapes: Question Difficulty, Epistemic Success, and Convergence. Episteme 10 , 441-464 (2013).
- T. J. Sejnowski, P. S. Churchland, J. A. Movshon, Putting big data to good use in neuroscience. Nat. Neurosci. 17 , 1440-1441 (2014).
- W. C. Wimsatt, "Reductionism, Levels of Organization, and the Mind-Body Problem" in Consciousness and the Brain: A Scientific and Philosophical Inquiry , G. G. Globus, G. Maxwell, I. Savodnik, Eds. (Springer US, 1976), pp. 205-267.
- W. Bechtel, Philosophy of science: An overview for cognitive science (Psychology Press, 2013).
- Y. Dudai, K. Evers, To simulate or not to simulate: what are the questions? Neuron 84 , 254-261 (2014).
- Y. Goldman, M. Morad, Ionic membrane conductance during the time course of the cardiac action potential. J. Physiol. March 27, 2020 preprint Levenstein et al . -On the role of theory and modeling in neuroscience | 22 268 , 655-695 (1977).
- A. M. Katz, Cardiac ion channels. N. Engl. J. Med. 328 , 1244-1251 (1993).
- G. B. Ermentrout, N. Kopell, Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I. SIAM J. Math. Anal. 15 , 215-237 (1984).
- P. W. Bridgman, The logic of modem physics. New York (1927).
- H. Chang, Inventing Temperature: Measurement and Scientific Progress (Oxford University Press, 2007).
- G. de Hollander, B. U. Forstmann, S. D. Brown, Different Ways of Linking Behavioral and Neural Data via Computational Cognitive Models. Biol Psychiatry Cogn Neurosci Neuroimaging 1 , 101-109 (2016).
- J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U. S. A. 79 , 2554-2558 (1982).
- J. J. Hopfield, D. Tank, ``Neural'' computation of decisions in optimization problems. Biol. Cybern. 52 , 141-152 (1985).
- J. Hertz, A. Krogh, R. G. Palmer, Introduction to the Theory of Neural Computation (Addison-Wesley, 1991).
- C. A. Del Negro, G. D. Funk, J. L. Feldman, Breathing matters. Nat. Rev. Neurosci. 19 , 351-367 (2018).
- J.-M. Ramirez, N. Baertsch, Defining the Rhythmogenic Elements of Mammalian Breathing. Physiology 33 , 302-316 (2018).
- F. Peña, M. A. Parkis, A. K. Tryba, J.-M. Ramirez, Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43 , 105-117 (2004).
- C. A. Del Negro, et al. , Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J. Neurosci. 25 , 446-453 (2005).
- D. Levenstein, G. Buzsáki, J. Rinzel, NREM sleep in the rodent neocortex and hippocampus reflects excitable dynamics. Nat. Commun. 10 , 2478 (2019).
- P. J. Gonçalves, et al. , Training deep neural density estimators to identify mechanistic models of neural dynamics. bioRxiv , 838383 (2019).
- S. R. Bittner, et al. , Interrogating theoretical models of neural computation with deep inference. bioRxiv , 837567 (2019).
- J. Gunawardena, Models in biology: "accurate descriptions of our pathetic thinking." BMC Biol. 12 , 29 (2014).
- C. Omar, J. Aldrich, R. C. Gerkin, Collaborative infrastructure for test-driven scientific model validation. of the 36th International Conference on … (2014).
- R. C. Gerkin, R. J. Jarvis, S. M. Crook, Towards systematic, data-driven validation of a collaborative, multi-scale model of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373 (2018).
- T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, 1984).
- T. Kohonen, Content-Addressable Memories (Springer, 1980).
- G. Lakoff, Women, Fire, and Dangerous Things (University of Chicago Press, 1990).
- E. Rosch, Prototype classification and logical classification: The two systems. New trends in conceptual representation: Challenges (1983).
- K. Obermayer, G. G. Blasdel, K. Schulten, Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. Phys. Rev. A 45 , 7568-7588 (1992).
- K. Obermayer, T. J. Sejnowski, Howard Hughes Medical Institute Computational Neurobiology Laboratory Terrence J Sejnowski, T. A. Poggio, Self-organizing Map Formation: Foundations of Neural Computation (MIT Press, 2001).
- N. V. Swindale, H.-U. Bauer, Application of Kohonen's self-organizing feature map algorithm to cortical maps of orientation and direction preference. Proc. R. Soc. Lond. B Biol. Sci. 265 , 827-838 (1998).
- N. V. Swindale, How different feature spaces may be represented in cortical maps. Network 15 , 217-242 (2004).
- E. de Villers-Sidani, M. M. Merzenich, Lifelong plasticity in the rat auditory cortex: basic mechanisms and role of sensory experience. Prog. Brain Res. 191 , 119-131 (2011).
- M. Nahum, H. Lee, M. M. Merzenich, Principles of neuroplasticity-based rehabilitation. Prog. Brain Res. 207 , 141-171 (2013).
- D. J. Freedman, M. Riesenhuber, T. Poggio, E. K. Miller, Categorical Representation of Visual Stimuli in the Primate March 27, 2020 preprint Levenstein et al . -On the role of theory and modeling in neuroscience | 23
- Prefrontal Cortex. Science 291 , 312-316 (2001).
- D. J. Freedman, M. Riesenhuber, T. Poggio, E. K. Miller, A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J. Neurosci. 23 , 5235-5246 (2003).
- T. J. Wills, C. Lever, F. Cacucci, N. Burgess, J. O'Keefe, Attractor Dynamics in the Hippocampal Representation of the Local Environment. Science 308 , 873-876 (2005).
- L. L. Colgin, et al. , Attractor-Map Versus Autoassociation Based Attractor Dynamics in the Hippocampal Network. J. Neurophysiol. (2010).
- T. Yang, M. N. Shadlen, Probabilistic reasoning by neurons. Nature 447 , 1075-1080 (2007).
- K. Jezek, E. J. Henriksen, A. Treves, E. I. Moser, M. B. Moser, Theta-paced flickering between place-cell maps in the hippocampus. Nature 478 , 246-249 (2011).
- E. Kelemen, A. A. Fenton, Coordinating different representations in the hippocampus. Neurobiol. Learn. Mem. 129 , 50-59 (2016).
- O. Guest, A. E. Martin, How computational modeling can force theory building in psychological science (2020) https:/doi.org/ 10.31234/osf.io/rybh9 .
- I. van Rooij, G. Baggio, Theory before the test: How to build high-verisimilitude explanatory theories in psychological science (2020).
- W. Bechtel, Integrating sciences by creating new disciplines: The case of cell biology. Biology and Philosophy 8 , 277-299 (1993).
- A. D. Redish, Addiction as a computational process gone awry. Science 306 , 1944-1947 (2004).
- A. D. Redish, S. Jensen, A. Johnson, A unified framework for addiction: vulnerabilities in the decision process. Behav. Brain Sci. 31 , 415-487 (2008).
- P. R. Montague, R. J. Dolan, K. J. Friston, P. Dayan, Computational psychiatry. Trends Cogn. Sci. 16 , 72-80 (2012).
- A. D. Redish, J. A. Gordon, Eds., Computational Psychiatry: New Perspectives on Mental Illness (MIT Press, 2016).
- Q. J. M. Huys, T. V. Maia, M. J. Frank, Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19 , 404-413 (2016).
- B. A. Richards, et al. , A deep learning framework for neuroscience. Nat. Neurosci. 22 , 1761-1770 (2019).
- A. Gomez-Marin, A. A. Ghazanfar, The Life of Behavior. Neuron 104 , 25-36 (2019).
- P. Cisek, Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys. 81 , 2265-2287 (2019).
- R. Brette, Is coding a relevant metaphor for the brain? Behav. Brain Sci. , 1-44 (2019).
- R. E. Kass, et al. , Computational Neuroscience: Mathematical and Statistical Perspectives. Annu Rev Stat Appl 5 , 183-214 (2018).
- B. Devezer, L. G. Nardin, B. Baumgaertner, E. O. Buzbas, Scientific discovery in a model-centric framework: Reproducibility, innovation, and epistemic diversity. PLoS One 14 , e0216125 (2019).