Academia.eduAcademia.edu

Outline

Nuclear fusion induced by x rays in a crystal

2016, Physical Review C

https://doi.org/10.1103/PHYSREVC.93.034622

Abstract

The nuclei that constitute a crystalline lattice oscillate relative to each other with a very low energy that is not sufficient to penetrate through the Coulomb barriers separating them. An additional energy, which is needed to tunnel through the barrier and fuse, can be supplied by external electromagnetic waves (x rays or synchrotron radiation). Exposing the solid compound LiD (lithium deuteride) to x rays for the duration of 111 h, we detect 88 events of nuclear fusion d + 6 Li → 8 Be *. Our theoretical estimate agrees with what we observed. One possible application of the phenomenon we found is in measurements of the rates of various nuclear reactions (not necessarily fusion) at extremely low energies inaccessible in accelerator experiments.

References (21)

  1. R. Balian, J.-P. Blaizot, and P. Bonche, Cold fusion in a dense electron gas, J. Phys. (France) 50, 2307 (1989).
  2. A. C. Sips, G. Giruzzi, S. Ide, C. Kessel, T. C. Luce, J. A. Snipes, and J. K. Stober, Progress in preparing scenarios for operation of the International Thermonuclear Experimental Reactor, Phys. Plasmas 22, 021804 (2015).
  3. H. S. Picker, On the fusion of hydrogen isotopes in ordinary molecules, Nucleonica 25, 1491 (1980).
  4. J. D. Jackson, Catalysis of nuclear reactions between hydrogen isotopes by μ -mesons, Phys. Rev. 106, 330 (1957).
  5. H. E. Rafelski, D. Harley, G. R. Shin, and J. Rafelski, Cold fusion: Muon-catalysed fusion, J. Phys. B 24, 1469 (1991).
  6. D. V. Balin et al., High precision study of muon catalyzed fusion in D2 and HD gases, Phys. Part. Nuclei (JINR, Dubna) 42, 185 (2011).
  7. S. E. Jones, Muon-catalysed fusion revisited, Nature 321, 127 (1986).
  8. V. B. Belyaev, M. B. Miller, Yu. G. Sobolev, A. V. Sermyagin, I. V. Kuznetzov, and E. Bialkovski, Molecular-nuclear transition 6 LiD → 6 Be * : Search with a paired E -E telescope, Few- Body Syst. 38, 103 (2006).
  9. D. R. Tilley, J. H. Kelley, J. L. Godwin, D. C. Millener, J. E. Purcell, C. G. Sheu, and H. R. Weller, Energy levels of light nuclei A = 8,9,10, Nucl. Phys. A 745, 155 (2004).
  10. J. Grineviciute, L. Lamia, A. M. Mukhamedzhanov, C. Spitaleri, and M. La Cognata, Low-energy R-matrix fits for the 6 Li(d,α) 4 HeS factor, Phys. Rev. C 91, 014601 (2015).
  11. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Perga- mon Press, Oxford, UK, 1965).
  12. D. Laplaze, Lattice dynamics of lithium hydride and lithium deuteride: Effect of long-range tree-body forces, J. Phys. C 10, 3499 (1977).
  13. P. J. Mohr, B. N. Taylor, and D. B. Newell, CODATA recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys. 84, 1527 (2012), Table XLI.
  14. E. G. Nadjakov, K. P. Marinova, and Yu. P. Gangrsky, System- atics of nuclear charge radii, At. Data Nucl. Data Tables 56, 133 (1994).
  15. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. I (W. A. Benjamin, New York, 1969), p. 173.
  16. D. I. Blokhintsev, Quantum Mechanics (D. Reidel, Dordrecht, Netherlands, 1964).
  17. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed. (North-Holland, Amsterdam, 2007).
  18. C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, Chicago, 1988).
  19. A. A. Azooz, S. H. Al-Niaemi, and M. A. Al-Jubbori, A parametrization of nuclear track profiles in CR-39 detector, Comput. Phys. Commun. 183, 2470 (2012).
  20. D. Nikezic and K. N. Yu, Computer program TRACK_TEST for calculating parameters and plotting profiles for etch pits in nuclear track materials, Comput. Phys. Commun. 174, 160 (2006).
  21. C. Spitaleri et al., Measurement of the 10 keV resonance in the 10 B(p,α 0 ) 7 Be reaction via the Trojan Horse method, Phys. Rev. C 90, 035801 (2014).