Academia.eduAcademia.edu

Outline

Critical states embedded in the continuum

2015, New Journal of Physics

https://doi.org/10.1088/1367-2630/17/1/013003

Abstract

We introduce a class of critical states which are embedded in the continuum (CSC) of onedimensional optical waveguide array with one non-Hermitian defect. These states are at the verge of being fractal and have real propagation constant. They emerge at a phase transition which is driven by the imaginary refractive index of the defect waveguide and it is accompanied by a mode segregation which reveals analogies with the Dicke super -radiance. Below this point the states are extended while above they evolve to exponentially localized modes. An addition of a background gain or loss can turn these localized states to bound states in the continuum.

References (40)

  1. A. Peres, Quantum Theory: Concepts and Methods, Kluwer Academic Publishers (1993).
  2. N. F. Mott, Adv. Phys. 16, 49 (1967).
  3. J. von Neumann and E. Wigner, Z. Phys. 30, 465 (1929).
  4. Y. Plotnik et al, Phys. Rev. Lett. 107, 183901 (2011).
  5. S. Weimann et al, Phys. Rev. Lett. 111, 240403 (2013).
  6. G. Corrielli et al, Phys. Rev. Lett. 111, 220403 (2013).
  7. C. W. Hsu et al, Nature 499, 188 (2013).
  8. R. Porter, D. Evans, Wave Motion 43, 29 (2005);
  9. C. M. Linton, P. McIver, Wave Motion 45, 16 (2007).
  10. F. Capasso, et al, Nature358, 565 (1992).
  11. D. C. Marinica, A. G. Borisov, S. V. Shabanov, Phys. Rev. Lett. 100, 183902 (2008).
  12. J. Okolowicz, M. Ploszajczak, I. Rotter, Phys. Rep. 374, 271 (2003).
  13. K. Zhou et al, Opt. Lett. 35, 2928 (2010)
  14. A. Regensburger et al, Phys. Rev. Lett. 110, 223902 (2013)
  15. S. Longhi, Bound states in the continuum in PT - symmetric optical lattices, arXiv:1402.3761 (2014)
  16. D.N. Christodoulides, F. Lederer, and Y. Silberberg, Na- ture 424, 817 (2003).
  17. It is possible to have the same (R) 0 for the defect waveg- uide (without violating the Kramers-Kronig relations). One way to achieve this is by correcting the changes in the (R) 0 at n = 0, due to the presence of (I) 0 , by appro- priate adjustment of its width.
  18. A. Guo, et. al., Phys. Rev. Lett. 103, 093902 (2009).
  19. T. Eichelkraut et al, Nature Communcations 4, 2533 (2013)
  20. C. E. Ruter et. al, Nat. Phys. 6, 192 (2010).
  21. R.H. Dicke, Phys. Rev. 93, 99 (1954).
  22. V. V. Sokolov, V. G. Zelevinsky, Nucl. Phys. A504, 562 (1989).
  23. G. L. Celardo et al., J. Phys. Chem. C 116, 22105 (2012);
  24. R. Monshouwer et al, J. Phys. Chem. B 101, 7241 (1997).
  25. J. Keaveney et al, Phys. Rev. Lett. 108, 173601 (2012);
  26. M. O. Scully, A. A. Svidzinsky, Science 328, 1239 (2010).
  27. E. N. Economou, Green's Functions in Quantum Physics, Springer Series in Solid-State Sciences (Third Edition) (2006).
  28. A. D. Mirlin, Phys. Rep. 326, 259 (2000);
  29. Y. V. Fyodorov and A. D. Mirlin, Int. J. Mod. Phys. 8, 3795 (1994);
  30. Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. B 51, 13403 (1995).
  31. V. I. Falko and K. B. Efetov, Europhys. Lett. 32, 627 (1995);
  32. Phys. Rev. B 52, 17413 (1995).
  33. F. Wegner, Z. Phys. B 36, 209 (1980);
  34. H. Aoki, J. Phys. C 16, L205 (1983);
  35. M. Schreiber and H. Grussbach, Phys. Rev. Lett. 67, 607 (1991);
  36. D. A. Parshin and H. R. Schober, ibid. 83, 4590 (1999);
  37. A. Mildenberger, F. Ev- ers, and A. D. Mirlin, Phys. Rev. B 66, 033109 (2002).
  38. We note that for even N there are two critical states that emerge symmetrically around Re(β) = 0. The rest of the analysis remains qualitatively the same.
  39. A. Ossipov, I. Rushkin, and E. Cuevas, Journal of Physics: Cond. Matt. 23, 415601 (2011).
  40. L.I. Deych et al, Phys. Rev. Lett. 91, 096601 (2003)