Critical states embedded in the continuum
2015, New Journal of Physics
https://doi.org/10.1088/1367-2630/17/1/013003Abstract
We introduce a class of critical states which are embedded in the continuum (CSC) of onedimensional optical waveguide array with one non-Hermitian defect. These states are at the verge of being fractal and have real propagation constant. They emerge at a phase transition which is driven by the imaginary refractive index of the defect waveguide and it is accompanied by a mode segregation which reveals analogies with the Dicke super -radiance. Below this point the states are extended while above they evolve to exponentially localized modes. An addition of a background gain or loss can turn these localized states to bound states in the continuum.
References (40)
- A. Peres, Quantum Theory: Concepts and Methods, Kluwer Academic Publishers (1993).
- N. F. Mott, Adv. Phys. 16, 49 (1967).
- J. von Neumann and E. Wigner, Z. Phys. 30, 465 (1929).
- Y. Plotnik et al, Phys. Rev. Lett. 107, 183901 (2011).
- S. Weimann et al, Phys. Rev. Lett. 111, 240403 (2013).
- G. Corrielli et al, Phys. Rev. Lett. 111, 220403 (2013).
- C. W. Hsu et al, Nature 499, 188 (2013).
- R. Porter, D. Evans, Wave Motion 43, 29 (2005);
- C. M. Linton, P. McIver, Wave Motion 45, 16 (2007).
- F. Capasso, et al, Nature358, 565 (1992).
- D. C. Marinica, A. G. Borisov, S. V. Shabanov, Phys. Rev. Lett. 100, 183902 (2008).
- J. Okolowicz, M. Ploszajczak, I. Rotter, Phys. Rep. 374, 271 (2003).
- K. Zhou et al, Opt. Lett. 35, 2928 (2010)
- A. Regensburger et al, Phys. Rev. Lett. 110, 223902 (2013)
- S. Longhi, Bound states in the continuum in PT - symmetric optical lattices, arXiv:1402.3761 (2014)
- D.N. Christodoulides, F. Lederer, and Y. Silberberg, Na- ture 424, 817 (2003).
- It is possible to have the same (R) 0 for the defect waveg- uide (without violating the Kramers-Kronig relations). One way to achieve this is by correcting the changes in the (R) 0 at n = 0, due to the presence of (I) 0 , by appro- priate adjustment of its width.
- A. Guo, et. al., Phys. Rev. Lett. 103, 093902 (2009).
- T. Eichelkraut et al, Nature Communcations 4, 2533 (2013)
- C. E. Ruter et. al, Nat. Phys. 6, 192 (2010).
- R.H. Dicke, Phys. Rev. 93, 99 (1954).
- V. V. Sokolov, V. G. Zelevinsky, Nucl. Phys. A504, 562 (1989).
- G. L. Celardo et al., J. Phys. Chem. C 116, 22105 (2012);
- R. Monshouwer et al, J. Phys. Chem. B 101, 7241 (1997).
- J. Keaveney et al, Phys. Rev. Lett. 108, 173601 (2012);
- M. O. Scully, A. A. Svidzinsky, Science 328, 1239 (2010).
- E. N. Economou, Green's Functions in Quantum Physics, Springer Series in Solid-State Sciences (Third Edition) (2006).
- A. D. Mirlin, Phys. Rep. 326, 259 (2000);
- Y. V. Fyodorov and A. D. Mirlin, Int. J. Mod. Phys. 8, 3795 (1994);
- Y. V. Fyodorov and A. D. Mirlin, Phys. Rev. B 51, 13403 (1995).
- V. I. Falko and K. B. Efetov, Europhys. Lett. 32, 627 (1995);
- Phys. Rev. B 52, 17413 (1995).
- F. Wegner, Z. Phys. B 36, 209 (1980);
- H. Aoki, J. Phys. C 16, L205 (1983);
- M. Schreiber and H. Grussbach, Phys. Rev. Lett. 67, 607 (1991);
- D. A. Parshin and H. R. Schober, ibid. 83, 4590 (1999);
- A. Mildenberger, F. Ev- ers, and A. D. Mirlin, Phys. Rev. B 66, 033109 (2002).
- We note that for even N there are two critical states that emerge symmetrically around Re(β) = 0. The rest of the analysis remains qualitatively the same.
- A. Ossipov, I. Rushkin, and E. Cuevas, Journal of Physics: Cond. Matt. 23, 415601 (2011).
- L.I. Deych et al, Phys. Rev. Lett. 91, 096601 (2003)