Academia.eduAcademia.edu

Outline

The LHCb Detector at the LHC

2008, Journal of Instrumentation

Abstract

The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described. KEYWORDS: Large detector systems for particle and astroparticle physics; Particle tracking detectors; Gaseous detectors; Calorimeters; Cherenkov detectors; Particle identification methods; Photon detectors for UV, visible and IR photons; Detector alignment and calibration methods; Detector cooling and thermo-stabilization; Detector design and construction technologies and materials.

References (251)

  1. LHCb collaboration, A Large Hadron Collider beauty experiment, Technical Proposal, CERN-LHCC-98-004, http://cdsweb.cern.ch/record/622031.
  2. LHCb collaboration, R. Antunes-Nobrega et al., LHCb reoptimized detector design and performance, CERN-LHCC-2003-030, http://cdsweb.cern.ch/record/630827.
  3. M. Needham and T. Ruf, Estimation of the material budget of the LHCb detector, Note LHCb-2007-025, http://cdsweb.cern.ch/record/1023537.
  4. J. Christiansen, Requirements to the L0 front-end electronics, Note LHCb-2001-014, http://cdsweb.cern.ch/record/691647.
  5. J. Christiansen, Requirements to the L1 front-end electronics, EDMS document https://edms.cern.ch/document/715154.
  6. P. Moreira et al., G-Link and gigabit ethernet compliant serializer for LHC data transmission, IEEE Nucl. Sci. Symp. Conf. Rec. 2 (2000) 9/6; A radiation tolerant gigabit serializer for LHC data transmission, http://edms.cern.ch/file/906036/1/.
  7. J. Christiansen, Test, time alignment, calibration and monitoring in the LHCb front-end electronics, EDMS document https://edms.cern.ch/document/692583.
  8. B. Taylor, Timing distribution at the LHC, Proceedings of the LECC 2002 Workshop, Colmar France (2002), http://cdsweb.cern.ch/record/592719.
  9. Embedded Local Monitor Board home page, http://elmb.web.cern.ch/ELMB/ELMBhome.html.
  10. G. Haefeli et al., The LHCb DAQ interface board T ELL1, Nucl. Instrum. Meth. A 560 (2006) 494.
  11. Radiation hardness assurance, http://lhcb-elec.web.cern.ch/lhcb-elec/html/radiation_hardness.htm.
  12. G. Corti and G. von Holtey, Study of beampipe induced background in the LHCb detector for the optimization of the vacuum chamber design, Note LHCb-2003-085. 2008 JINST 3 S08005
  13. J.R. Knaster, The vacuum chamber in the interaction region of particle colliders: a historical study and developments implemented in the LHCb experiment at CERN, Ph.D. Thesis, CERN-ETSII, Geneva Switzerland (2004).
  14. CERN Safety Instruction IS nr 25, http://safety-commission.web.cern.ch/safety- commission/SC-site/sc_pages/documents/instructions.html
  15. R. Veness et al., Study of minimised UHV flanges for LHC experiments, CERN Vacuum tech. Note EDMS document https://edms.cern.ch/document/350384.
  16. D. Ramos, Design of the fixed beampipe supports inside the acceptance region of the LHCb experiment, CERN Vacuum Tech. Note, EDMS document https://edms.cern.ch/document/882924.
  17. C. Benvenuti et al., Vacuum properties of TiZrV non-evaporable getter films, Vacuum 60 (2001) 57.
  18. O. Grobner, Overview of the LHC vacuum system, Vacuum 60 (2001) 25.
  19. L. Fernandez-Herando et al., The radiation monitoring system for the LHC experimental areas, TS-Note-2004-006, http://cdsweb.cern.ch/record/740728.
  20. B. Todd et al., The architecture, design and realisation of the LHC beam interlock system, in Proceedings of the 10 th ICALEPCS International Conference on Accelerator & Large Experimental Physics Control System, Geneva Switzerland (2005).
  21. E. Effinger et al., Single gain radiation tolerant LHC beam loss acquisition card, in Proceedings of the 8 th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators, Venice Italy (2007), http://cdsweb.cern.ch/record/1045244.
  22. LHCb collaboration, R. Antunes-Nobrega et al., LHCb computing technical design report, CERN-LHCC-2005-019, http://cdsweb.cern.ch/record/835156.
  23. LHCb collaboration, S. Amato et al., LHCb magnet technical design report, CERN-LHCC-2000-007, http://cdsweb.cern.ch/record/424338.
  24. J. André et al., Status of the LHCb magnet system, IEEE Trans. Appl. Supercond. 12 (2002) 366.
  25. J. André, et al., Status of the LHCb dipole magnet, IEEE Trans. Appl. Supercond. 14 (2004) 509.
  26. M. Patel, M. Losasso and T. Gys., Magnetic shielding studies of the LHCb rich photon detectors, Nucl. Instrum. Meth. A 553 (2005) 114.
  27. F. Bersgma, Calibration of Hall sensors in three dimensions, in Proceedings of the 13 th International Magnetic Measurement Workshop (IMMW13), SLAC Stanford, California U.S.A. (2003), http://cdsweb.cern.ch/record/1072471. 2008 JINST 3 S08005
  28. LHCb collaboration, P.R. Barbosa-Marinho et al., Vertex locator technical design report, CERN-LHCC-2001-011, http://cdsweb.cern.ch/record/504321.
  29. P. Koppenburg, Simulation of the vertex trigger preprocessor:effects of noise on L1 performance, Note LHCb-1999-003, http://cdsweb.cern.ch/record/691699.
  30. P. Koppenburg, Effect of pulse overspill on the level 1 trigger, Note LHCb-2001-078, http://cdsweb.cern.ch/record/684442.
  31. D. Petrie, C. Parkes and S. Viret, Study of the impact of VELO misalignments on the LHCb tracking and L1 trigger performance, Note LHCb-2005-056, http://cdsweb.cern.ch/record/899299.
  32. M. Ferro-Luzzi et al., A first study of wake fields in the LHCb detector, Note LHCb-99-041, http://cdsweb.cern.ch/record/684454; Wake fields in the LHCb vertex detector, Note LHCb-99-043, http://cdsweb.cern.ch/record/691632;
  33. N. Van Bakel et al., Wake fields in the LHCb vertex detector: alternative design for the wake fields suppressor, Note LHCb-99-044, http://cdsweb.cern.ch/record/691599.
  34. LHCb VELO GROUP collaboration, Review of the planned replacement of n-on-n with n-on-p detectors for LHCb-Velo, EDMS document https://edms.cern.ch/document/883223.
  35. S. Löchner and M. Schmelling, The Beetle Reference Manual, Note LHCb-2005-105, http://cdsweb.cern.ch/record/1000429.
  36. R. Mountain et al., VELO module transport box document and operational guide, Syracuse University note, SU-LHCb-2006-02-03.
  37. A. Bates et. al., A facility for long term evaluation and quality assurance of LHCb vertex detector modules, Note LHCb-2007-102, http://cdsweb.cern.ch/record/1061056.
  38. M. Schmelling, Specification of the front-end electronics for the LHCb vertex locator, Note LHCb-2001-048, http://cdsweb.cern.ch/record/691610.
  39. A. Bates et. al., VELO module characterisation: results from the Glasgow LHCb VELO module burn-in, Note LHCb-2007-103, http://cdsweb.cern.ch/record/1046811.
  40. L. Eklund et. al., Radiation tests of the VELO ECS and Analogue Repeater Mezzanines, Note LHCb-2006-001, http://cdsweb.cern.ch/record/926372.
  41. L. Eklund, Control and monitoring of VELO and pile-up level 0 electronics, EDMS document https://edms.cern.ch/document/596194.
  42. D. Breton and D. Charlet, SPECS: the Serial Protocol for the Experiment Control System of LHCb, Note LHCb-2003-004, http://cdsweb.cern.ch/record/681284.
  43. S. Kersten and P. Kind, Technical description of the interlock circuit and system of the ATLAS pixel detector, ATL-IP-ES-0041. 2008 JINST 3 S08005
  44. G. Haefeli, Contribution to the development of the acquisition electronics for the LHCb experiment, LPHE Master thesis, Lausanne Switzerland (2004).
  45. LHCb ST and VELO GROUP collaborations, G. Haefeli and A. Gong, LHCb VELO and ST clusterization on T ELL1 EDMS document https://edms.cern.ch/document/690585.
  46. LHCb VELO GROUP, D. Eckstein, VELO raw data format and strip numbering, EDMS document https://edms.cern.ch/document/637676.
  47. LHCb VELO GROUP collaboration, M. Ferro-Luzzi, VELO hardware interlocks, EDMS document https://edms.cern.ch/document/706629.
  48. M. Artuso and J.C. Wang, Study of the spatial resolution achievable with the BTeV pixel sensors, Nucl. Instrum. Meth. A 465 (2000) 115 [hep-ex/0007054].
  49. C. Parkes and T. Szumlak, VELO event model, Note LHCb-2006-054, http://cdsweb.cern.ch/record/989093.
  50. C. Parkes, T. Ruf and T. Szumlak, Reconstruction of cluster positions in the LHCb VELO, Note LHCb-2007-151, http://cdsweb.cern.ch/record/1074928.
  51. W. Baldini et al., LHCb alignment strategy, Note LHCb-2006-035, http://cdsweb.cern.ch/record/964804.
  52. V. Blobel and C. Kleinwort, A new method for the high-precision alignment of track detectors, Contribution to the Conference on Advanced Statistical Techniques in Particle Physics PHYSTAT2002, Durham U.K., hep-ex/0208021.
  53. T.W. Versloot, Position reconstruction and charge distribution in LHCb VELO silicon sensors, Note LHCb-2007-119, http://cdsweb.cern.ch/record/1073483.
  54. J. Gassner, M. Needham and O. Steinkamp, Layout and expected performance of the LHCb TT station, Note LHCb-2003-140, http://cdsweb.cern.ch/record/728548.
  55. LHCb collaboration, P.R. Barbosa-Marinho et al., LHCb inner tracker technical design report, CERN-LHCC-2002-029, http://cdsweb.cern.ch/record/582793.
  56. J. Gassner, F. Lehner and S. Steiner, The mechanical design of the LHCb silicon trigger tracker, Note LHCb-2004-110, http://cdsweb.cern.ch/record/858499.
  57. J.-L. Agram et al., The silicon sensors for the Compact Muon Solenoid tracker -design and qualification procedure, Note CMS-2003-015, http://cdsweb.cern.ch/record/687875.
  58. A. Bay et al., Hybrid design, procurement and testing for the LHCb silicon tracker, Note LHCb-2005-061, http://cdsweb.cern.ch/record/885752.
  59. I. Abt et al., Gluing silicon with silicone, Nucl. Instrum. Meth. A 411 (1998) 191.
  60. A. Vollhardt, A radiation tolerant fiber-optic readout system for the LHCb silicon tracker, Note LHCb-2005-032, http://cdsweb.cern.ch/record/872267. 2008 JINST 3 S08005
  61. V. Bobillier, J. Christiansen and R. Frei, Grounding, shielding and power distribution in LHCb, Note LHCb-2004-039, http://cdsweb.cern.ch/record/738180.
  62. D. Esperante and A. Vollhardt, Design and development of the control board for the LHCb silicon tracker, Note LHCb-2007-153, http://cdsweb.cern.ch/record/1082457.
  63. TTCrq, http://proj-qpll.web.cern.ch/proj-qpll/ttcrq.htm.
  64. C. Bauer et al., Grounding, shielding and power distribution for the LHCb silicon tracking, Note LHCb-2004-101, http://cdsweb.cern.ch/record/836185.
  65. M. Agari et al., Test beam results of multi-geometry prototype sensors for the LHCb inner tracker, Note LHCb-2002-058, http://cdsweb.cern.ch/record/684437.
  66. R. Bernhard et al., Measurements of prototype ladders for the silicon tracker with laser, Note LHCb-2003-075, http://cdsweb.cern.ch/record/684488.
  67. M. Agari et al., Test-beam measurements on prototype ladders for the LHCb TT station and Inner Tracker, Note LHCb-2003-082, http://cdsweb.cern.ch/record/722699.
  68. J. Gassner et al., Measurements of prototype ladders for the TT station with a laser, Note LHCb-2004-102, http://cdsweb.cern.ch/record/818585.
  69. M. Agari et al., Measurements of a prototype ladder for the TT station in a 120 GeV/c π - beam, Note LHCb-2004-103, http://cdsweb.cern.ch/record/811085.
  70. S. Köstner and U. Straumann, Noise considerations for the beetle amplifier used with long silicon strip detectors, Note LHCb-2005-029, http://cdsweb.cern.ch/record/837194.
  71. M. Needham, Silicon tracker occupancies and clustering, Note LHCb-2007-024, http://cdsweb.cern.ch/record/1023456.
  72. M. Needham and D. Volyanskyy, Updated geometry description for the LHCb trigger tracker, Note LHCb-2006-032, http://cdsweb.cern.ch/record/961216.
  73. A. Perrin and K. Vervink, The inner tracker detector description and its implementation in the XML database, Note LHCb-2006-018, http://cdsweb.cern.ch/record/962061.
  74. LHCb collaboration, P.R. Barbosa-Marinho et al., Outer tracker technical design report, CERN-LHCC-2001-024, http://cdsweb.cern.ch/record/519146.
  75. S. Bachmann, Specifications for the drift gas quality of the outer tracking system, Note LHCb-2002-031; Proposal for the gas distribution in the outer tracking system, Note LHCb-2003-054.
  76. J. Nardulli and N. Tuning, A study of the material in an outer tracker module, Note LHCb-2004-114, http://cdsweb.cern.ch/record/815493.
  77. T. Haas, Aging phenomena in the LHCb outer tracker, Nucl. Instrum. Meth. A 581 (2007) 164.
  78. A. Berkien et al., The LHCb outer tracker front-end electronics, Note LHCb-2005-025, http://cdsweb.cern.ch/record/1089278;
  79. Y. Guz et al., Study of the global performance of an LHCb OT front-end electronics prototype, Note LHCb-2004-120.
  80. N. Dressnandt et al., Implementation of the ASDBLR and DTMROC ASICS for the ATLAS TRT in DMILL technology, Proceedings of the 6 th Workshop on Electronics for LHC Experiments, Cracow Poland (2000), http://cdsweb.cern.ch/record/478863;
  81. R. Bevensee et al., An amplifier-shaper-discriminator with baseline restoration for the ATLAS transition radiation tracker, IEEE Trans. Nucl. Sci. 43 (1996) 1725.
  82. H. Deppe, et al., The OTIS reference manual, Note LHCb-2008-010, http://cdsweb.cern.ch/record/1089277.
  83. U. Stange, Development and characterization of a rad hard readout chip for the LHCb outer tracker detector, PhD Thesis, Heidelberg Germany (2005).
  84. U. Uwer et al., Specifications for the IF13-2 prototype of the auxiliary board for the outer tracker, Note LHCb-2005-039.
  85. G.W. van Apeldoorn et al., Beam tests of final modules and electronics of the LHCb outer tracker in 2005, Note LHCb-2005-076, http://cdsweb.cern.ch/record/896901.
  86. T. Bauer, J. Nardulli and N. Tuning, Flatness of an outer tracker module, Note LHCb-2005-009.
  87. N. Tuning and A. Pellegrino, Flatness of an outer tracker layer in a prototype C-frame, Note LHCb-2008-003.
  88. H. Dekker et al., The RASNIK/CCD 3-dimensional alignment system, in Proceedings of the 3 rd International Workshop On Accelerator Alignment (IWAA 93), Annecy France (1993).
  89. M. Adamus, A. Nawrot and M. Szczekowski, Alignment system for the outer tracker detector in LHCb experiment, Note LHCb-2001-006, http://cdsweb.cern.ch/record/691623;
  90. M. Adamus et al., First results from a prototype of the RASNIK alignment system for the outer tracker detector in LHCb experiment, Note LHCb-2002-016.
  91. LHCb RICH GROUP collaboration, N. Brook et al., LHCb RICH 1 engineering design review report, Note LHCb-2004-121, http://cdsweb.cern.ch/record/897981.
  92. F. Metlica, Development of light-weight spherical mirrors for RICH detectors, NIMA 48462, http://dx.doi.org/10.1016/j.nima.2008.07.026.
  93. A. Papanestis, Limits of software compensation for mirror misalignment of the RICH detectors, Note LHCb-2001-141.
  94. R. Plackett, Photon detectors for the Ring Imaging Cherenkov detectors of the LHCb experiment, PhD Thesis, University of London, London U.K. (2006). 2008 JINST 3 S08005
  95. LHCb collaboration, S. Amato et al., LHCb RICH technical design report, CERN-LHCC-2000-037, http://cdsweb.cern.ch/record/494263.
  96. LHCb RICH GROUP collaboration, M. Adinolfi et al., LHCb RICH 2 engineering design review report, Note LHCb-2002-009, http://cdsweb.cern.ch/record/691478.
  97. T. Bellunato, Development of ring imaging Cherenkov detectors for LHCb, PhD Thesis, Università degli Studi di Milano, Milano Italy (2001).
  98. M. Laub, Development of opto-mechanical tools and procedures for a new generation of RICH-detectors at CERN, PhD Thesis, Ceské vysoké ucení technické v Praze, Prague Czech Republic (2001).
  99. L. Fernández Hernando, New automatic techniques to test optical components of the next generation of RICH detectors at CERN, PhD Thesis, Universitat Politècnica de Catalunya, Barcelona Spain (2001).
  100. G. Aglieri-Rinella, Development of the photon detection, acquisition and optical systems of modern ring imaging Cherenkov detectors, PhD Thesis, Università degli Studi di Palermo, Palermo Italy (2006).
  101. C. D'Ambrosio et al., The optical systems of LHCb RICHes: a study on the mirror walls and mirrors specifications, Note LHCb-2000-071, http://cdsweb.cern.ch/record/691486.
  102. T. Gys, Magnetic field simulations for the LHCb-RICH 2 detector, Note LHCb-2002-029;
  103. M. Patel et al., Magnetic shielding studies of the RICH photon detectors, Note LHCb-2005-055, http://cdsweb.cern.ch/record/920381;
  104. M. Alemi, Passive magnetic shielding calculation for the photodetectors of RICH2, Note LHCb-1998-017, http://cdsweb.cern.ch/record/691679.
  105. M.Y. Barnykov et al., Development of aerogel Cherenkov counters with wavelength shifters and phototubes, Nucl. Instrum. Meth. A 419 (1998) 584.
  106. T. Bellunato et al., Performance of aerogel as Cherenkov radiator, Nucl. Instrum. Meth. A 519 (2004) 493.
  107. T. Bellunato et al., Study of ageing effects in aerogel, Nucl. Instrum. Meth. A 527 (2004) 319.
  108. T. Bellunato et al., Refractive index inhomogeneity within an aerogel block, Nucl. Instrum. Meth. A 556 (2006) 140.
  109. D. Perego, Ageing tests and recovery procedures of silica aerogel, Note LHCb-2008-004.
  110. O. Ullaland, Fluid systems for RICH detectors, Nucl. Instrum. Meth. A 553 (2005) 107.
  111. M. Bosteels et al., LHCb RICH gas system proposal, LHCb-2000-079, http://cdsweb.cern.ch/record/684687. 2008 JINST 3 S08005
  112. A. Braem et al., Metal multi-dielectric mirror coatings for Cherenkov detectors, Nucl. Instrum. Meth. A 553 (2005) 182.
  113. E. Albrecht et al., Operation, optimisation and performance of the DELPHI RICH detectors, Nucl. Instrum. Meth. A 433 (1999) 47.
  114. E. Albrecht et al., The mirror system of COMPASS RICH 1, Nucl. Instrum. Meth. A 502 (2003) 236;
  115. P. Fauland, The COMPASS experiment and the RICH-1 detector, PhD Thesis, Universität Bielefeld, Mannheim Germany (2004).
  116. M. Alemi et al., First operation of a hybrid photon detector prototype with electrostatic cross-focussing and integrated silicon pixel readout, Nucl. Instrum. Meth. A 449 (2000) 48.
  117. K. Wyllie et al., Silicon detectors and electronics for pixel hybrid photon detectors, Nucl. Instrum. Meth. A 530 (2004) 82.
  118. M. Adinolfi, System test of a three-column LHCb RICH 2 prototype detector, Nucl. Instrum. Meth. A 553 (2005) 328.
  119. P. Moreira et al., A radiation tolerant gigabit serializer for LHC data transmission, Proceedings of the Seventh Workshop on Electronics for LHC Experiments, CERN-LHCC-2001-034, http://cdsweb.cern.ch/record/588665.
  120. J. Christiansen et al., Receiver ASIC for timing, trigger and control distribution in LHC experiments, IEEE Trans. Nucl. Sci 43 (1996) 1773;
  121. TTCrx reference manual V. 3.10, http://ttc.web.cern.ch/TTC/TTCrx_manual3.10.pdf, (2005).
  122. C. Arnaboldi et al., The high voltage distribution system for the hybrid photodetector arrays of RICH 1 and RICH 2 at LHCb, IEEE Nucl. Sci. Symp. Conf. Rec. 1 (2005) 413.
  123. C. Gaspar et al, The use of credit card-sized PCs for interfacing electronics boards to the LHCb ECS, Note LHCb-2001-147.
  124. C. D'Ambrosio et al., The LHCb RICH detector control system, Note LHCb-2004-071, http://cdsweb.cern.ch/record/793159.
  125. C. Gaspar and M. Dönszelmann, DIM: a distributed information management system for the DELPHI experiment at CERN, presented at IEEE Conference REAL TIME '93, Vancouver Canada (1993), http://cdsweb.cern.ch/record/254799.
  126. B. Hallgren et al., The Embedded Local Monitor Board (ELMB) in the LHC front-end I/O control system, presented at the 7 th Workshop on Electronics for LHC Experiments, Stockholm Sweden (2001), http://cdsweb.cern.ch/record/530675.
  127. M. Adinolfi et al., Performance of the LHCb RICH photodetectors in a charged particle beam, Nucl. Instrum. Meth. A 574 (2007) 39. 2008 JINST 3 S08005
  128. S. Easo et al., Simulation of LHCb RICH detectors using GEANT4, IEEE Trans. Nucl. Sci. 52 (2005) 1665.
  129. LHCb collaboration, S. Amato et al., LHCb calorimeters technical design report, CERN-LHCC-2000-036, http://cdsweb.cern.ch/record/494264.
  130. E. Guschin and S.V. Laptev, Monte-Carlo study of LHCb preshower, Note LHCb-2000-030, http://cdsweb.cern.ch/record/691547.
  131. S. Barsuk et al., Design and construction of the electromagnetic calorimeter for the LHCb experiment, Note LHCb-2000-043, http://cdsweb.cern.ch/record/691508.
  132. R. Djeliadine, O. Iouchtchenko and V.F. Obraztsov, LHCb hadron trigger and HCAL cell size and length optimisation, Note LHCb-1999-035, http://cdsweb.cern.ch/record/691688.
  133. C. Beigbeder-Beau et al., A joint proposal for the level 0 calorimetric triggers, Note LHCb-99-017, http://cdsweb.cern.ch/record/691582.
  134. C. Beigbeder-Beau et al., The front-end electronics for LHCb calorimeters, Note LHCb-2000-028, http://cdsweb.cern.ch/record/691705.
  135. S. Bota et al., Scintillator pad detector front-end electronics, Note LHCb-2000-027, http://cdsweb.cern.ch/record/691544.
  136. G. Böhner et al., Front-end electronics for the LHCb preshower detector, Note LHCb-2000-048, http://cdsweb.cern.ch/record/691511.
  137. B. Delcourt, J. Lefrançois, Investigation of widening of the π 0 mass peak with electronic defects, Note LHCb-2000-029, http://cdsweb.cern.ch/record/691719.
  138. S.N. Filippov et al., Design and construction of the LHCb scintillator-pad/preshower detector, Note LHCb-2000-042, http://cdsweb.cern.ch/record/691521.
  139. S.N. Filippov et al., Experimental performance of PS/SPD prototypes, Note LHCb-2000-031, http://cdsweb.cern.ch/record/691545.
  140. G. Böhner et al., Very front-end electronics for LHCb preshower, Note LHCb-2000-047, http://cdsweb.cern.ch/record/691512.
  141. Z. Ajaltouni et al., Study of multianode photomultipliers for the electromagnetic calorimeter preshower read out of the LHCb experiment, Nucl. Instrum. Meth. A 504 (2003) 9; Photomultiplier pulse read out system for the preshower detector of the LHCb experiment, Nucl. Instrum. Meth. A 504 (2003) 250.
  142. E. Aguiló et al., Test of multi-anode photomultiplier tubes for the LHCb scintillator pad detector, Nucl. Instrum. Meth. A 538 (2005) 255.
  143. E. Graugés et al., Mass characterization of MaPMT tubes for the LHCb scintillator pad detector, Nucl. Instrum. Meth. A 572 (2007) 427.
  144. S. Monteil, Photodetector performance for the LHCb pre-shower detector, in Proceedings of the 11 th International Conference on Calorimetry in High-Energy Physics, CALOR 2004, Perugia Italy (2004).
  145. L. Garrido et al., Results of tagged photon test beam for the scintillator pad detector, Note LHCb-2000-032, http://cdsweb.cern.ch/record/691546;
  146. E. Aguiló et al., Backsplash testbeam results for the SPD subdetector of LHCb, Nucl. Instrum. Meth. A 546 (2005) 438.
  147. HERA-B collaboration, HERA-B: an experiment to study CP violation in the B system using an internal target at the HERA proton ring. Proposal, DESY-PRC-94-002; HERA-B: an experiment to study CP violation in the B system using an internal target at the HERA proton ring. Design report, DESY-PRC-95-01.
  148. PHENIX collaboration, PHENIX: preliminary conceptual design report, BNL-PROPOSAL-R2.
  149. HERA-B collaboration, E. Tarkovsky, The HERA-B electromagnetic calorimeter, Nucl. Instrum. Meth. A 379 (1996) 515.
  150. A. Bazilevsky et al., Performance of the PHENIX EM calorimeter, IEEE Trans. Nucl. Sci. 43 (1996) 1491.
  151. J. Badier et al., Shashlik calorimeter beam-test results, Nucl. Instrum. Meth. A 348 (1994) 74.
  152. A. Arefiev et al., Design, construction, quality control and performance study with cosmic rays of modules for the LHCb electromagnetic calorimeter, Note LHCb-2007-148, http://cdsweb.cern.ch/record/1080559.
  153. A. Arefiev et al., Beam test results of the LHCb electromagnetic calorimeter, Note LHCb-2007-149, http://cdsweb.cern.ch/record/1103500.
  154. V. Brekhovskikh et al., The WLS fiber time properties study, Note LHCb-2000-039, http://cdsweb.cern.ch/record/691514.
  155. R.I. Dzhelyadin, The LHCb hadron calorimeter, Nucl. Instrum. Meth. A 494 (2002) 332, also in Proceedings of the 8 th International Conference on Instrumentation for Colliding Beam Physics, Novosibirsk Russia (2002).
  156. L.G. Afanasieva et al., The hadron calorimeter design and construction, Note LHCb-2000-045, http://cdsweb.cern.ch/record/691506.
  157. M. Bonnet et al., The hadron calorimeter prototype design and construction, Note LHCb-2000-035, http://cdsweb.cern.ch/record/691513.
  158. C. Coca et al., The hadron calorimeter prototype beam-test results, Note LHCb-2000-036, http://cdsweb.cern.ch/record/691519.
  159. R.I. Dzhelyadin et al., The hadron calorimeter module-0 construction, Note LHCb-2001-122.
  160. G.I. Britvich et al., The HCAL optics radiation damage study, Note LHCb-2000-037, http://cdsweb.cern.ch/record/691516.
  161. I. Korolko, J. Ocariz and A. Schopper, HCAL performance with irradiated sub-components, Note LHCb-2000-038, http://cdsweb.cern.ch/record/691524.
  162. C. Beigbeder-Beau et al., The readout of the LHCb calorimeters, Note LHCb-2000-046, http://cdsweb.cern.ch/record/691493.
  163. N. Dumont-Dayot, The preprocessor FPGA for the ECAL/HCAL and PS/SPD detectors, LAPP EDMS I-008689 https://edms.in2p3.fr/file/I-008689/1/pp-fpga-firmware.pdf.
  164. D. Boget et al., The readout of the LHCb calorimeters, EDMS 527942 http://edms.cern.ch/document/527942.
  165. G. Böhner, LHCb preshower signal characteristics, Note LHCb-2000-026, http://cdsweb.cern.ch/record/691597.
  166. D. Gascón et al, The front-end electronics of the scintillator pad detector of LHCb calorimeter, in Proceedings of the 12 th LECC Workshop, Valencia Spain (2006), http://cdsweb.cern.ch/record/1027429.
  167. D. Gascón et al., A BICMOS synchronous pulse discriminator for the LHCb calorimeter system, in Proceedings of the 8 th LECC Workshop, Colmar France (2002), http://cdsweb.cern.ch/record/619291.
  168. S. Luengo et al., SPD very front end electronics, Nucl. Instrum. Meth. A 567 (2006) 310.
  169. D. Breton and D. Charlet, Using the SPECS in LHCb, Note LHCb-2003-005.
  170. A. Arefiev et al., Design of PMT base for the LHCb electromagnetic calorimeter, Note LHCb-2003-150.
  171. G. Avoni et al., The HERA-B ECAL electronics and monitoring, in Proceedings of International Conference on Calorimetry in Particle Physics, CALOR 2000, Annecy France (2000).
  172. S. Amato et al., Analysis of the B 0 s → µ + µ -decay with the reoptimized LHCb detector, Note LHCb-2003-165, http://cdsweb.cern.ch/record/726431.
  173. LHCb collaboration, LHCb muon system technical design report, CERN-LHCC-2001-010, http://cdsweb.cern.ch/record/504326.
  174. LHCb collaboration, LHCb addendum to the muon system technical design report, CERN-LHCC-2003-002, http://cdsweb.cern.ch/record/600536. 2008 JINST 3 S08005
  175. LHCb collaboration, LHCb second addendum to the muon system technical design report, CERN-LHCC-2005-012, http://cdsweb.cern.ch/record/831955.
  176. G. Martellotti, R. Santacesaria and A. Satta, Muon system digitization, Note LHCb-2004-063, http://cdsweb.cern.ch/record/784561.
  177. R. Santacesaria and A. Satta, A new calculation of the low energy background in the muon system, Note LHCb-2003-057, http://cdsweb.cern.ch/record/684464.
  178. G. Martellotti, R. Santacesaria and A. Satta, Particle rates in the LHCb muon detector, Note LHCb-2005-075, http://cdsweb.cern.ch/record/896904.
  179. B. Bochin et al., Wire pad chamber for LHCb muon system, Note LHCb-2000-003, http://cdsweb.cern.ch/record/681334.
  180. B. Bochin et al., Beam tests of WPC-7 prototype of wire pad chambers for the LHCb muon system, Note LHCb-2000-102, http://cdsweb.cern.ch/record/691718.
  181. D. Hutchcroft et al., Results obtained with the first four gap MWPC prototype chamber, Note LHCb-2001-024, http://cdsweb.cern.ch/record/691631.
  182. B. Bochin et al., Test results of a full size prototype of the muon chambers for region M2/R4 of the LHCb muon system, Note LHCb-2002-025, http://cdsweb.cern.ch/record/681216.
  183. B. Maréchal et al., Construction and test of the prototype chamber for region 1 of the LHCb muon station 2, Note LHCb-2002-034, http://cdsweb.cern.ch/record/691482.
  184. M. Anelli et al., Test of MWPC prototypes for R3 of the LHCb muon system, Note LHCb-2004-074, http://cdsweb.cern.ch/record/793160.
  185. G. Lanfranchi, Time resolution and aging properties of the MWPCs for the LHCb muon system, Nucl. Instrum. Meth. A 535 (2004) 221.
  186. E. Danè et al., Detailed study of the gain of the MWPCs for the LHCb muon system, Nucl. Instrum. Meth. A 572 (2007) 682.
  187. A. Kachtchouk et al., Performance study of a MWPC prototype for the LHCb muon system with the ASDQ chip, Note LHCb-2000-062, http://cdsweb.cern.ch/record/681340.
  188. W. Riegler, Detector physics and performance: simulation of the MWPCs for the full LHCb muon system, Note LHCb-2000-060, http://cdsweb.cern.ch/record/681186.
  189. R. Veenhof, Garfield -simulation of gaseous detectors, http://consult.cern.ch/writeup/garfield/.
  190. I. Smirnov, Heed: interactions of particles with gases, http://consult.cern.ch/writeup/heed/.
  191. S. Biagi, Magboltz: transport of electrons in gas mixtures, http://consult.cern.ch/writeup/magboltz/. 2008 JINST 3 S08005
  192. A. Kachtchouk et al., Design and construction of the wire chambers for the LHCb muon system, Note LHCb-2001-026, http://cdsweb.cern.ch/record/684460.
  193. M. Anelli et al., Quality tests of the LHCb muon chambers at the LNF production site, IEEE Trans. Nucl. Sci. 53 (2006) 330.
  194. A.F. Barbosa et al., Production and quality control of MWPC for the LHCb muon system at CERN, IEEE Trans. Nucl. Sci. 53 (2006) 336.
  195. E. Dané, D. Pinci and A. Sarti, Results of the quality controls of the four-gap MWPCs produced at LNF for LHCb, IEEE Trans. Nucl. Sci. 54 (2007) 354.
  196. P. Ciambrone et al., Automated wire tension measurement system for LHCb muon chambers, Nucl. Instrum. Meth. A 545 (2005) 156.
  197. W. Baldini et al., A laser based instrument for MWPC wire tension measurement, Note LHCb-2007-120, http://cdsweb.cern.ch/record/1055333.
  198. A. Alves et al., Results of the MWPC gas gain uniformity test performed at CERN, Note LHCb-2007-115, http://cdsweb.cern.ch/record/1054084.
  199. S. Agosteo et al., A facility for the test of large-area muon chambers at high rates, Nucl. Instrum. Meth. A 452 (2000) 94.
  200. V. Souvorov et al., First results of an aging test of a full scale MWPC prototype for the LHCb muon system, Nucl. Instrum. Meth. A 515 (2003) 220.
  201. M. Anelli et al., Extensive ageing test of two prototypes of four-gap MWPC for the LHCb muon system, Note LHCb-2004-029, http://cdsweb.cern.ch/record/733605.
  202. F. Sauli, GEM: a new concept for electron amplification in gas detectors, Nucl. Instrum. Meth. A 386 (1997) 531.
  203. G. Bencivenni et al., Advances in triple-GEM detector operation for high-rate particle triggering, Nucl. Instrum. Meth. A 513 (2003) 264.
  204. M. Alfonsi et al., Advances in fast multi-GEM-based detector operation for high-rate charged-particle triggering, IEEE Trans. Nucl. Sci. 51 (2004) 2135.
  205. A. Bressan et al., Beam tests of the gas electron multiplier, Nucl. Instrum. Meth. A 425 (1999) 262.
  206. M. Alfonsi et al., Studies of etching effects on triple-GEM detectors operated with CF/sub 4/-based gas mixtures, IEEE Trans. Nucl. Sci. 52 (2005) 2872.
  207. M. Alfonsi et al., Aging measurements on triple-GEM detectors operated with CF 4 based gas mixtures, Nucl. Phys. B 150 (Proc. Suppl.) (2006) 159.
  208. W. Bonivento, D. Marras and G. Auriemma, Production of the front-end boards of the LHCb muon system, Note LHCb-2007-150, http://cdsweb.cern.ch/record/1079951.
  209. D. Moraes et al., CARIOCA 0.25 µm CMOS fast binary front-end for sensor interface using a novel current-mode feedback technique, , IEEE Proc. Int. Symp. Circuits Syst. 1 (2001) 360.
  210. W. Bonivento et al., Status of the CARIOCA project, in Proceedings of the 7 th workshop on electronics for LHC experiments, Stockholm Sweden (2001), http://lhc-electronics- workshop.web.cern.ch/LHC-electronics-workshop/2001/muon/moraesboniv.pdf.
  211. W. Bonivento, Design and performance of the front-end electronics of the LHCb muon detector, in Proceedings of the 11 th workshop on electronics for LHC and future experiments, Heidelberg Germany (2005), http://www.lecc2005.uni-hd.de/.
  212. S. Cadeddu, C. Deplano and A. Lai, The DIALOG chip in the front-end electronics of the LHCb muon detector, IEEE Trans. Nucl. Sci. 52 (2005) 2726.
  213. S. Cadeddu et al., DIALOG and SYNC: a VLSI chip set for timing of the LHCb muon detector, IEEE Trans. Nucl. Sci. 51 (2004) 1961.
  214. V. Bocci et al., The services boards system for the LHCb muon detector (equalization, timing and monitoring of the 120k front end channels in the LHCb muon detector), IEEE Nucl. Sci. Symp. Conf. Rec. 3 (2007) 2134.
  215. Technical documentation on the ELMB can be found at Embedded Local Monitor Board home page, http://elmb.web.cern.ch/ELMB/ELMBhome.html.
  216. G. Felici et al., The L0 Off Detector Electronics (ODE) for the LHCb muon spectrometer, in Proceedings of the 10 th Workshop on Electronics for LHC and future experiments, Boston U.S.A. (2004), http://lhc-workshop-2004.web.cern.ch/lhc-workshop-2004/.
  217. P. Moreira, QPLL manual v. 1.1, http://proj-qpll.web.cern.ch/proj-qpll/images/qpllManual.pdf, (2005).
  218. P. Moreira et al., A radiation tolerant gigabit serializer for LHC data transmission, in Proceedings of the 7 th Workshop on Electronics for LHC Experiments, Stockholm Sweden (2001), http://lhc-electronics-workshop.web.cern.ch/LHC-electronics- workshop/2001/opto/Moreira.pdf.
  219. G. Corradi et al., A novel high-voltage system for a triple GEM detector, Nucl. Instrum. Meth. A 572 (2007) 96.
  220. G. Sabatino et al., Cluster size measurements for the LHCb muon system M5R4 MWPCs using cosmic rays, Note LHCb-2006-011, http://cdsweb.cern.ch/record/939097.
  221. S. de Capua et al., Study of gas gain uniformity for the LHCb muon system MWPCs using cosmic rays, Note LHCb-2006-010, http://cdsweb.cern.ch/record/939085.
  222. M. Anelli et al., Test of a MPWC for the LHCb muon system at the GIF at CERN, Note LHCb-2005-003, http://cdsweb.cern.ch/record/815058. 2008 JINST 3 S08005
  223. LHCb collaboration, R. Antunes-Nobrega et al., LHCb trigger system technical design report, CERN-LHCC-2003-031, http://cdsweb.cern.ch/record/630828.
  224. E. Aslanides et al., The level-0 muon trigger for the LHCb experiment, Nucl. Instrum. Meth. A 579 (2007) 989.
  225. M. Krasowski et al., Primary vertex reconstruction, Note LHCb-2007-011, http://cdsweb.cern.ch/record/1057577.
  226. LHCb collaboration, P.R. Barbosa-Marinho et al., LHCb online system technical design report, CERN-LHCC-2001-040, http://cdsweb.cern.ch/record/545306.
  227. LHCb collaboration, Addendum to the LHCb online system technical design report, CERN-LHCC-2005-039, http://cdsweb.cern.ch/record/903611.
  228. RD12 collaboration, Timing, Trigger and Control (TTC) systems for the LHC, http://ttc.web.cern.ch/TTC/ and links therein.
  229. T. Sjöstrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135 (2001) 238 [hep-ph/0010017].
  230. GEANT detector description and simulation tool, CERN Program Library long writeup W5013 (1994).
  231. J. van Tilburg, Matching VELO tracks with seeding tracks, Note LHCb-2001-103, http://cdsweb.cern.ch/record/691686;
  232. R. Forty, Track seeding, Note LHCb-2001-109, http://cdsweb.cern.ch/record/691473;
  233. R. Hierck, Track following in LHCb, Note LHCb-2001-112, http://cdsweb.cern.ch/record/691752;
  234. M. Benayoun and O. Callot, The forward tracking, an optical model method, Note LHCb-2002-008, http://cdsweb.cern.ch/record/684710;
  235. Y. Xie, Short track reconstruction with VELO and TT, Note LHCb-2003-100, http://cdsweb.cern.ch/record/684462;
  236. O. Callot, M. Kucharczyk and M. Witek, VELO-TT track reconstruction, Note LHCb-2007-010, http://cdsweb.cern.ch/record/1027834;
  237. D. Hutchcroft et al., VELO pattern recognition, Note LHCb-2007-013, http://cdsweb.cern.ch/record/1023540;
  238. O. Callot and S. Hansmann-Menzemer, Performance of the forward tracking, Note LHCb-2007-015, http://cdsweb.cern.ch/record/1033584;
  239. R. Forty and M. Needham, Updated performance of the T-seeding, Note LHCb-2007-023, http://cdsweb.cern.ch/record/1023581;
  240. O. Callot, Downstream pattern recognition, Note LHCb-2007-026, http://cdsweb.cern.ch/record/1025827;
  241. M. Needham, Performance of the track matching, Note LHCb-2007-129, http://cdsweb.cern.ch/record/1060807; Performance of the LHCb track reconstruction software, Note LHCb-2007-144, http://cdsweb.cern.ch/record/1080556. 2008 JINST 3 S08005
  242. R. Hierck et al., Performance of the LHCb OO track-fitting software, Note LHCb-2000-086, http://cdsweb.cern.ch/record/684697;
  243. E. Rodrigues, The LHCb track Kalman fit, Note LHCb-2007-014;
  244. E. Bos et al., The trajectory model for track fitting and alignment, Note LHCb-2007-008, http://cdsweb.cern.ch/record/1025826.
  245. R. Forty and O. Schneider, RICH pattern recognition, Note LHCb-98-040, http://cdsweb.cern.ch/record/684714.
  246. R. Muresan, Cherenkov ring reconstruction methods, Note LHCb-2007-121, http://cdsweb.cern.ch/record/1057872.
  247. J.R.T. de Mello Neto and M. Gandelman, Muon ID performance with the reoptimized LHCb detector, Note LHCb-2003-089, http://cdsweb.cern.ch/record/691744;
  248. M. Gandelman and E. Polycarpo, The performance of the LHCb muon identification procedure, Note LHCb-2007-145, http://cdsweb.cern.ch/record/1093941.
  249. H. Terrier and I. Belyaev, Particle identification with LHCb calorimeters, Note LHCb-2003-092, http://cdsweb.cern.ch/record/691743.
  250. V. Breton, N. Brun and P. Perret, A clustering algorithm for the LHCb electromagnetic calorimeter using cellular automaton, Note LHCb-2001-123, http://cdsweb.cern.ch/record/681262.
  251. O. Deschamps et al., Photon and neutral pion reconstruction, Note LHCb-2003-091, http://cdsweb.cern.ch/record/691634.