Academia.eduAcademia.edu

Outline

The Euler-Poincaré equations and double bracket dissipation

1996, Communications in Mathematical Physics

Abstract

This paper studies the perturbation of a Lie-Poisson (or, equivalently an Euler-Poincar6) system by a special dissipation term that has Brockett's double bracket form. We show that a formally unstable equilibrium of the unperturbed system becomes a spectrally and hence nonlinearly unstable equilibrium after the perturbation is added. We also investigate the geometry of this dissipation mechanism and its relation to Rayleigh dissipation functions. This work complements our earlier work (Bloch, Krishnaprasad, Marsden and Ratiu [1991, 1994]) in which we studied the corresponding problem for systems with symmetry with the dissipation added to the internal variables; here it is added directly to the group or Lie algebra variables. The mechanisms discussed here include a number of interesting examples of physical interest such as the Landau-Lifschitz equations for ferromagnetism, certain models for dissipative rigid body dynamics and geophysical fluids, and certain relative equilibria in plasma physics and stellar dynamics.

References (73)

  1. Abarbanet, H.D.I., Holm, D.D., Marsden, J.E., Ratiu, T.S. [1986]: Nonlinear stability analysis of stratified fluid equilibria. Phil. Trans. R. Soc. Lond. A 318, 349-409; also Phys. Rev. Lett. 52 2352-2355 [1984]
  2. Abraham, R., Marsden, J.E. [1978]: Foundations of Mechanics. (2nd ed.) Reading, MA: Addison- Wesley Alekseevski, D.V., Michor, P.W. [1993]: Characteristic classes and Cartan connections. Preprint Arnold, V. [1988]: Dynamical Systems III. Encyclopedia of Mathematics, Berlin, Heidelberg, New York: Springer
  3. Bloch, A.M., Brockett, R.W., Ratiu, T.S. [1992]: Completely integrable gradient flows. Commun. Math. Phys. 147, 57-74
  4. Bloch, A.M., Crouch, P.E. [1994]: Reduction of Euler Lagrange problems for constrained varia- tional problems and relation with optimal control problems. Proc. CDC 33, 2584-2590, IEEE
  5. Bloch, A.M., Flaschka, H., Ratiu, T.S. [1990]: A convexity theorem for isospectral sets of Jacobi matrices in a compact Lie algebra. Duke Math. J. 61, 41-66
  6. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S. [1991]: Asymptotic stability, instabil- ity, and stabilization of relative equilibria. Proc. of ACC., Boston IEEE, 1120-1125
  7. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Ratiu, T.S. [1994]: Dissipation Induced Instabil- ities. Ann. Inst. H. Poincar6, Analyse Nonlineare 11, 37-90
  8. Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Sfinchez de Alvarez, G. [1992]: Stabilization of rigid body dynamics by internal and external torques. Automatica 28, 745-756
  9. Brockett, R.W. [1973]: Lie theory and control systems defined on spheres. SlAM J. Appl. Math./ 23, 213-225
  10. Brockett, R.W. [1988]: Dynamical systems that sort lists and solve linear programming problems. Proc. IEEE 27, 799-803 and Linear Algebra and its Appl. 146, (1991), 79-91
  11. Brockett, R.W. [1993]: Differential geometry and the design of gradient algorithms. Proc. Syrup. Pure Math., AMS 54, Part I, 69-92
  12. Brockett, R.W. [1994]: The double bracket equation as a solution of a variational problem. Fields Institute Comm. 3, 69-76, AMS
  13. Chandrasekhar, K. [1977]: Ellipsoidal Figures of Equilibrium. Dover Chern, S.J., Marsden, J.E. [1990]: A note on symmetry and stability for fluid flows. Geo. Astro. Fluid. Dyn. 51, 1-4
  14. Chetaev, N.G. [1961]: The stability of Motion. Trans. by M. Nadler, New York: Pergamon Press Crouch, P.E. [1981]: Geometric structures in systems theory. IEEE Proc, Part D, No 5 128
  15. Ebin, D.G., Marsden, J.E. [1970]: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102-163
  16. Giles, R., Patterson, G., Bagneres, A., Kotiuga, R., Humphrey, F., Mansuripur, M. [1991]: Mi- cromagnetic simulations on the connection machine. Very Large Scale Computation in the 21st Century, J.P. Mesirov, ed., SIAM, 33-40
  17. Grmela, M. [1993@ Weakly nonlocal hydrodynamics. Phys. Rev. E 47, 351-365
  18. Grmela, M. [1984]: Bracket formulation of dissipative fluid mechanics equations. Phys. Lett. A 102, 355-358
  19. Grmela, M. [1993b]: Thermodynamics of driven systems. Phys. Rev. E 48, 919-930
  20. Guckenheimer, J., Mabalov, A. [1992]: Instability induced by symmetry reduction. Phys. Rev. Lett. 68, 2257-2260
  21. Hahn, W. [1967]: Stability of Motion. Springer, Berlin, New York: Heidelberg Haller, G. [1992]: Gyroscopic stability and its loss in systems with two essential coordinates. Int. J. Nonlinear Mech. 27, 113-127
  22. Helman, J.S., Braun, H.B., Broz, J.S., Baltensperger, W. [1991]: General solution to the Landau- Lifschitz-Gilbert equations linearized around a Bloch wall. Phys. Rev. B 43, 5908 5914
  23. Holm, D.D., Marsden, J.E., Ratiu, T.S., Weinstein, A. [1985]: Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123, 1-116
  24. Kammer, D.C., Gray, G.L. [1993]: A nonlinear control design for energy sink simulation in the Euler-Poinsot problem. J. Astron. Sci. 41, 53-72
  25. Kandrup, H.E. [1991]: The secular instability of axisymmetric collisionless star cluster. Astrophy. J. 380, 511-514
  26. Kandrup, H.E., Morrison, P. [1992]: Hamiltonian structure of the Vlasov-Einstein system and the problem of stability for spherical relativistic star clusters. Preprint.
  27. Kaufman, A.N. [1984]: Dissipative Hamiltonian systems: A unifying principle. Physics Letters A 100, 419-422
  28. Kaufman, A.N. [1985]: Lorentz-covariant dissipative Lagrangian systems. Physics Letters A 109, 87-89
  29. Kolfi(, I., Michor, P.W., Slovfik, J. [1993]: Natural Operations in Differential Geometry. Berlin, Heidelberg, New York: Springer
  30. Knobloch, E., Mahalov, Marsden, J.E. [1994], Normal forms for three-dimensional parametric instabilities in ideal hydrodynamics. Physica D 73, 49-81
  31. Krein, M.G. [1950]: A generalization of some investigations of linear differential equations with periodic coefficients. Doklady Akad. Nauk SSSR N.S. 73, 445-448
  32. Krishnaprasad, P.S. [1985]: Lie-Poisson structures, dual-spin spacecraft and asymptotic stability. Nonl. An. Th. Meth. and Appl. 9, 1011-1035
  33. LaSalle, J.P., Lefschetz, S. [1963]: Stability by Lyapunov's direct method. New York: Academic Press Lewis, D.K. [1992]: Lagrangian block diagonalization. Dyn. Diff. Eqn's. 4 1-42
  34. Lewis, D., Ratiu, T.S., Simo, J.C., Marsden, J.E. [1992]: The heavy top, a geometric treatment. Nonlinearity 5, 1-48
  35. Lewis, D.K., Simo, J.C. [1990]: Nonlinear stability of rotating pseudo-rigid bodies. Proc. Roy. Soc. Lon. A 427, 281~19
  36. MacKay, R. [19913: Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation. Phys. Lett. A155, 266-268
  37. Marsden, J.E. [1992]: Lectures on Mechanics. London Mathematical Society Lecture note series, 174, Cambridge: Cambridge University Press
  38. Marsden, J.E., Ratiu, T.S. [1992]: Symmetry and Mechanics. Texts in Applied Mathematics, 17, Berlin, Heilderberg, New York: Springer
  39. Marsden, J.E., Ratiu, T.S., Raugel, G. [1991]: Symplectic connections and the linearization of Hamiltonian systems. Proc. Roy. Soc. Ed. A 117, 329-380
  40. Marsden, J.E., Ratiu, T.S., Weinstein, A. [1984]: Semi-direct products and reduction in mechanics. Trans. Am. Math. Soc. 281, 147-177
  41. Marsden, J.E., Scheurle, J. [1993@ Lagrangian reduction and the double spherical pendulum. ZAMP 44, 17-43
  42. Marsden, J.E., Scheurle, J. [1993b]: The reduced Euler-Lagrange equations. Fields Institute Comm. 1, 139-164
  43. Marsden, J.E., Weinstein, A. [1982]: The Hamiltonian structure of the Maxwell Vlasov equations. Physica D 4, 394-406
  44. Morrison, P.J. [1980]: The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 80, 383 386
  45. Morrison, P.J. [1982]: Poisson Brackets for fluids and plasmas. In: Mathematical Methods in Hy- drodynamics and Integrability in Related Dynamical Systems. AIP Conf. Proc. 88, M. Tabor and Y.M. Treve (eds.), La Jolla, CA
  46. Morrison, P.J. [1986]: A paradigm for joined Hamiltonian and dissipative systems. Physica D 18, 410-419
  47. Morrison, P.J., Kotschenreuther, M. [1989]: The free energy principle, negative energy modes and stability Proc 4th Int. Workshop on Nonlinear and Turbulent Processes in Physics, Singapore: World Scientific Press.
  48. Newcomb, W.A. [19623: Lagrangian and Hamiltonian methods in Magnetohydrodynamics. Nuc. Fusion Suppl., part 2, 451-463
  49. O'Dell, T.H. [1981]: Ferromagnetodynamics. New York: John Wiley O'Reilly, O, Malhotra, N.K., Namamchehivaya, N.S. [1993]: Destabilization of the equilibria of reversible dynamical systems (preprint)
  50. Pego, R.L., Weinstein, M.I. [1992]: Eigenvalues and instabilities of solitary waves. Phil. Trans. Roy. Soc. Lon. 340, 47-94
  51. Poincar6, H. [1885]: Sur l'6quilibre d'une masse fluide anim6e d'un mouvement de rotation. Acta. Math. 7, 259
  52. Poincar~, H. [1892]: Les formes d'6quilibre d'une masse fluide en rotation. Revue Gdn6rale des Sciences 3, 809-815
  53. Poincar6, H. [1901]: Sur la stabilit~ de t'~quilibre des figures piriformes affect6es par une masse fluide en rotation. Philosophical Transactions A 198, 333-373
  54. Poincar6, H. [1910]: Sur la precession des corps deformables. Bull Astron 27, 321-356
  55. Posbergh, T.A. [1994]: The damped vibration absorber as a feedback control problem. Preprint Posbergh, T.A., Zhao, R. [1993]: Stabilization of the uniform rotation of a rigid body by the energy-momentum method. Fields Inst. Comm. 1, 263380
  56. Riemann, B. [1860]: Untersuchungen fiber die Bewegung eines fliissigen gleichartigen Ellipsoides. Abh. d. K6nigl. Gesell. der Wiss. zu G6ttingen 9, 3-36
  57. Routh, E.J. [1877]: Stability of a given state of motion. Reprinted in Stability of Motion, ed. A.T. Fuller, New York: Halsted Press, 1975
  58. Seliger, R.L., Whitham, G.B. [1968]: Variational principles in continuum mechanics. Proc. Roy. Soc. Lond. 305, 1-25
  59. Shepherd, T.G. [1992]: Extremal properties and Hamiltonian structure of the Euler equations. Topo- logical Aspects of the Dynamics of Fluids and Plasmas, Moffatt, H.K. et. al., eds, Dordrecht. KIuwer, 275-292
  60. Simo, J.C., Lewis, D.K., Marsden, J.E. [1991]: Stability of relative equilibria I: The reduced energy momentum method. Arch. Rat. Mech. Anal. 115, 15-59
  61. Simo, J.C., Posbergh, T.A., Marsden, J.E. [1990]: Stability of coupled rigid body and geometrically exact rods: Block diagonalization and the energy-momentmn method. Physics Reports 193, 280- 360
  62. Simo, J.C., Posbergh, T.A., Marsden, J.E. [1991]: Stability of relative equilibria II: Three dimen- sional elasticity. Arch. Rat. Mech. Anal. 115, 61-100
  63. Sri Namachchivaya, N., Ariaratnam, S.T. [1985]: On the dynamic stability of gyroscopic systems. SM Archives 10, 313-355
  64. Steinberg, S. [1963]: Lectures on Differential Geometry. New York: Prentice-Hall (Reprinted by Chelsea, 1983)
  65. Taussky, 0. [1961]: A Generalization of a Theorem of Lyapunov. SIAM J. Appl. Math 9, 640443
  66. Thomson, L., Tait, P.G. [1879]: Treatise on Natural Philosophy. Cambridge: Cambridge Univ. Press
  67. Touma, J., Wisdom, J. [1992]: Lie-Poisson integrators for rigid body dynamics in the solar system. Preprint
  68. Turski, L.A., Kanfman, A.N. [1987]: Canonical-dissipative formulation of relativistic plasma kinetic theory with self-consistent Maxwell field. Physics Lett. A 120, 331-333
  69. Vallis, G.K., Carnevale, G.F., Young, W.R. [1989]: Extremal energy properties and construction of stable solutions of the Euler equations. J. Fluid Mech. 207, 133-152
  70. van Gils, S.A., Krupa, M., Langford, W.F. [1990]: Hopf bifurcation with non-semisimple 1:1 resonance. Nonlinearity 3, 825-830
  71. Vershik, A.M., Faddeev, L.D. [1981]: Lagrangian mechanics in invariant form. Sel. Math. Sov. 1, 339-350
  72. Wang, L.S., Krishnaprasad, P.S. [1992]: Gyroscopic control and stabilization. J. Nonlinear Sci. 2, 367-415
  73. Ziegler, H. [1956]: On the concept of elastic stability. Adv. Appl. Mech. 4, 351-403