On the (Im)possibility of Cryptography with Imperfect Randomness
2004
Abstract
We investigate the feasibility of a variety of cryptographic tasks with imperfect randomness. The kind of imperfect randomness we consider are entropy sources, such as those considered by Santha and Vazirani, Chor and Goldreich, and Zuckerman. We show the following: ¯Certain cryptographic tasks like bit commitment, encryption, secret sharing, zero-knowledge, noninteractive zero-knowledge, and secure two-party computation for any non-trivial function are impossible to realize if parties have access to entropy sources with slightly less-than-perfect entropy, i.e., sources with imperfect randomness. These results are unconditional and do not rely on any unproven assumption. ¯On the other hand, based on stronger variants of standard assumptions, secure signature schemes are possible with imperfect entropy sources. As another positive result, we show (without any unproven assumption) that interactive proofs can be made sound with respect to imperfect entropy sources.
References (49)
- M. Ajtai and N. Linial. The influence of large coalitions. Combinatorica, 13(2):129-145, 1993.
- L. Babai and S. Moran. Arthur-Merlin games: A random- ized proof system and a hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254-276, 1988.
- B. Barak, R. Impagliazzo, and A. Wigderson. Extracting ran- domness from few independent sources. In Proc. 45th FOCS, 2004.
- A. Beimel, T. Malkin, and S. Micali. The all-or-nothing na- ture of two-party secure computation. In Proc. CRYPTO '99, pages 80-97, 1999.
- M. Bellare, O. Goldreich, and S. Goldwasser. Randomness in interactive proofs. Comput. Complex., 3(4):319-354, 1993.
- M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proc. 35th FOCS, pages 276-287, 1994.
- M. Ben-Or, O. Goldreich, S. Goldwasser, J. Hȧstad, J. Kil- ian, S. Micali, and P. Rogaway. Everything provable is prov- able in zero-knowledge. In Proc. CRYPTO '88, pages 37-56, 1988.
- C. H. Bennett, G. Brassard, and J.-M. Robert. Privacy ampli- fication by public discussion. SIAM J. Comput., 17(2):210- 229, 1988.
- M. Blum. Independent unbiased coin flips from a correlated biased source-a finite state Markov chain. Combinatorica, 6(2):97-108, 1986.
- M. Blum, P. Feldman, and S. Micali. Non-interactive zero- knowledge and its applications. In Proc. 20th STOC, pages 103-112, 1988.
- R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sa- hai. Exposure-resilient functions and all-or-nothing trans- forms. In Proc. EUROCRYPT '00, pages 453-469, 2000.
- B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication com- plexity. SIAM J. Comput., 17(2):230-261, 1988.
- B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolensky. The bit extraction problem of t-resilient func- tions. In Proc. 26th FOCS, pages 396-407. IEEE, 1985.
- Y. Dodis, A. Elbaz, R. Oliveira, and R. Raz. Improved ran- domness extraction from two independent sources. In Proc. RANDOM '04, 2004.
- Y. Dodis and R. Oliveira. On extracting private randomness over a public channel. In Proc. RANDOM '03, pages 252- 263, 2003.
- Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In Proc. EUROCRYPT '04, pages 523-540, 2004.
- Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security in exposure-resilient cryptography. In Proc. EURO- CRYPT '01, pages 301-324, 2001.
- Y. Dodis and J. Spencer. On the (non)universality of the one- time pad. In Proc. 43rd FOCS, pages 376-388, 2002.
- P. Elias. The efficient construction of an unbiased random sequence. Ann. Math. Stat., 43(2):865-870, 1972.
- U. Feige, D. Lapidot, and A. Shamir. Multiple non- interactive zero knowledge proofs under general assump- tions. SIAM J. Comput., 29(1):1-28, 1999.
- O. Goldreich. Foundations of cryptography, volume 2. Cam- bridge University Press, Cambridge, 2004. Basic applica- tions.
- O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem for protocols with honest majority. In Proc. 19th STOC, pages 218-229, 1987.
- O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all languages in NP have zero- knowledge proof systems. J. ACM, 38(1):691-729, 1991.
- O. Goldreich and Y. Oren. Definitions and properties of zero- knowledge proof systems. J. Cryptology, 7(1):1-32, 1994.
- S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM J. Comput., 18(1):186-208, 1989.
- S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems. Advances in Computing Research, 5:73-90, 1989.
- R. Impagliazzo and M. Yung. Direct minimum-knowledge computations. In Proc. CRYPTO '87, pages 40-51, 1987.
- J. Kamp and D. Zuckerman. Deterministic extractors for bit- fixing sources and exposure-resilient cryptography. In Proc. 35th FOCS, pages 92-101, 2003.
- T. Koshiba. A new aspect for security notions: Secure ran- domness in public-key encryption schemes. In Proc. 4th PKC, pages 87-103, 2001.
- T. Koshiba. On sufficient randomness for secure public-key cryptosystems. In Proc. 5th PKC, pages 34-47, 2002.
- D. Lichtenstein, N. Linial, and M. Saks. Some extremal problems arising from discrete control processes. Combi- natorica, 9(3):269-287, 1989.
- C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Ex- tractors: optimal up to constant factors. In Proc. 35th STOC, pages 602-611, 2003.
- C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. J. ACM, 39(4):859- 868, 1992.
- U. Maurer and S. Wolf. Privacy amplification secure against active adversaries. In Proc. CRYPTO '97, pages 307-321, 1997.
- J. L. McInnes and B. Pinkas. On the impossibility of pri- vate key cryptography with weakly random keys. In Proc. CRYPTO '90, pages 421-436, 1991.
- M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In Proc. 21th STOC, pages 33-43, 1988.
- N. Nisan and D. Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci., 52(1):43-52, 1996.
- O. Reingold, S. Vadhan, and A. Wigderson. A note on ex- tracting randomness from Santha-Vazirani sources. Unpub- lished manuscript, 2004.
- R. Renner and S. Wolf. Unconditional authenticity and pri- vacy from an arbitrarily weak secret. In Proc. CRYPTO '03, pages 78-95, 2003.
- M. Santha and U. V. Vazirani. Generating quasi-random se- quences from semi-random sources. J. Comput. Syst. Sci., 33(1):75-87, 1986.
- A. Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.
- A. Shamir. IP = PSPACE. J. ACM, 39(4):869-877, 1992.
- L. Trevisan and S. Vadhan. Extracting randomness from samplable distributions. In Proc. 41st FOCS, pages 32-42, 2000.
- U. V. Vazirani. Efficiency considerations in using semi- random sources. In Proc. 19th STOC, pages 160-168, 1987.
- U. V. Vazirani. Strong communication complexity or gen- erating quasirandom sequences from two communicating semirandom sources. Combinatorica, 7(4):375-392, 1987.
- U. V. Vazirani and V. V. Vazirani. Random polynomial time is equal to slightly-random polynomial time. In Proc. 26th FOCS, pages 417-428, 1985.
- J. von Neumann. Various techniques used in connection with random digits. National Bureau of Standards, Applied Math- ematics Series, 12:36-38, 1951.
- D. Zuckerman. Simulating BPP using a general weak ran- dom source. Algorithmica, 16(4/5):367-391, 1996.
- D. Zuckerman. Randomness-optimal oblivious sampling. Random. Struct. Algor., 11(4):345-367, 1997.